On the well posedness of vanishing viscosity limits
Journées équations aux dérivées partielles (2002), article no. 4, 10 p.

This paper provides a survey of recent results concerning the stability and convergence of viscous approximations, for a strictly hyperbolic system of conservation laws in one space dimension. In the case of initial data with small total variation, the vanishing viscosity limit is well defined. It yields the unique entropy weak solution to the corresponding hyperbolic system.

@article{JEDP_2002____A4_0,
     author = {Bressan, Alberto},
     title = {On the well posedness of vanishing viscosity limits},
     journal = {Journ\'ees \'equations aux d\'eriv\'ees partielles},
     eid = {4},
     pages = {1--10},
     publisher = {Universit\'e de Nantes},
     year = {2002},
     doi = {10.5802/jedp.602},
     mrnumber = {1968200},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/jedp.602/}
}
TY  - JOUR
AU  - Bressan, Alberto
TI  - On the well posedness of vanishing viscosity limits
JO  - Journées équations aux dérivées partielles
PY  - 2002
SP  - 1
EP  - 10
PB  - Université de Nantes
UR  - http://www.numdam.org/articles/10.5802/jedp.602/
DO  - 10.5802/jedp.602
LA  - en
ID  - JEDP_2002____A4_0
ER  - 
%0 Journal Article
%A Bressan, Alberto
%T On the well posedness of vanishing viscosity limits
%J Journées équations aux dérivées partielles
%D 2002
%P 1-10
%I Université de Nantes
%U http://www.numdam.org/articles/10.5802/jedp.602/
%R 10.5802/jedp.602
%G en
%F JEDP_2002____A4_0
Bressan, Alberto. On the well posedness of vanishing viscosity limits. Journées équations aux dérivées partielles (2002), article  no. 4, 10 p. doi : 10.5802/jedp.602. http://www.numdam.org/articles/10.5802/jedp.602/

[BB] S. Bianchini and A. Bressan, Vanishing viscosity solutions to nonlinear hyperbolic systems, Preprint S.I.S.S.A., Trieste 2001.

[B1] A. Bressan, Unique solutions for a class of discontinuous differential equations, Proc. Amer. Math. Soc. 104 (1988), 772-778. | MR | Zbl

[B2] A. Bressan, The unique limit of the Glimm scheme, Arch. Rational Mech. Anal. 130 (1995), 205-230. IV-9 | MR | Zbl

[B3] A. Bressan, Hyperbolic Systems of Conservation Laws. The One Dimensional Cauchy Problem. Oxford University Press, 2000. | MR | Zbl

[BG] A. Bressan and P. Goatin, Oleinik type estimates and uniqueness for n x n conservation laws, J. Diff. Equat. 156 (1999), 26-49. | MR | Zbl

[BLY] A. Bressan, T. P. Liu and T. Yang, L 1 stability estimates for n Ã— n conservation laws, Arch. Rational Mech. Anal. 149 (1999), 1-22. | MR | Zbl

[BS] A. Bressan and W. Shen, Uniqueness for discontinuous O.D.E. and conservation laws, Nonlinear Analysis, T. M. A. 34 (1998), 637-652. | MR | Zbl

[DP] R. Diperna, Convergence of approximate solutions to conservation laws, Arch. Rational Mech. Anal. 82 (1983), 27-70. | MR | Zbl

[G] J. Glimm, Solutions in the large for nonlinear hyperbolic systems of equations, Comm. Pure Appl. Math. 18 (1965), 697-715. | MR | Zbl

[GX] J. Goodman and Z. Xin, Viscous limits for piecewise smooth solutions to systems of conservation laws, Arch. Rational Mech. Anal. 121 (1992), 235- 265. | MR | Zbl

[K] S. Kruzhkov, First order quasilinear equations with several space variables, Math. USSR Sbornik 10 (1970), 217-243. | Zbl

[J] H. K. Jenssen, Blowup for systems of conservation laws, SIAM J. Math. Anal. 31 (2000), 894-908. | MR | Zbl

[L] T. P. Liu, Admissible solutions of hyperbolic conservation laws, Amer. Math. Soc. Memoir 240 (1981). | MR | Zbl

[O] O. Oleinik, Discontinuous solutions of nonlinear differential equations (1957), Amer. Math. Soc. Translations 26, 95-172. | MR | Zbl

[V] A. Vanderbauwhede, Centre manifolds, normal forms and elementary bifurcations, Dynamics Reported, Vol. 2 (1989 | MR | Zbl

Cité par Sources :