We review recent results concerning the study of rough solutions to the initial value problem for the Einstein vacuum equations expressed relative to wave coordinates. We develop new analytic methods based on Strichartz type inequalities which results in a gain of half a derivative relative to the classical result. Our methods blend paradifferential techniques with a geometric approach to the derivation of decay estimates. The latter allows us to take full advantage of the specific structure of the Einstein equations.
@incollection{JEDP_2002____A15_0, author = {Klainerman, Sergiu and Rodnianski, Igor}, title = {Regularity and geometric properties of solutions of the {Einstein-Vacuum} equations}, booktitle = {}, series = {Journ\'ees \'equations aux d\'eriv\'ees partielles}, eid = {15}, pages = {1--14}, publisher = {Universit\'e de Nantes}, year = {2002}, doi = {10.5802/jedp.613}, mrnumber = {1968211}, language = {en}, url = {http://www.numdam.org/articles/10.5802/jedp.613/} }
TY - JOUR AU - Klainerman, Sergiu AU - Rodnianski, Igor TI - Regularity and geometric properties of solutions of the Einstein-Vacuum equations JO - Journées équations aux dérivées partielles PY - 2002 SP - 1 EP - 14 PB - Université de Nantes UR - http://www.numdam.org/articles/10.5802/jedp.613/ DO - 10.5802/jedp.613 LA - en ID - JEDP_2002____A15_0 ER -
%0 Journal Article %A Klainerman, Sergiu %A Rodnianski, Igor %T Regularity and geometric properties of solutions of the Einstein-Vacuum equations %J Journées équations aux dérivées partielles %D 2002 %P 1-14 %I Université de Nantes %U http://www.numdam.org/articles/10.5802/jedp.613/ %R 10.5802/jedp.613 %G en %F JEDP_2002____A15_0
Klainerman, Sergiu; Rodnianski, Igor. Regularity and geometric properties of solutions of the Einstein-Vacuum equations. Journées équations aux dérivées partielles (2002), article no. 15, 14 p. doi : 10.5802/jedp.613. http://www.numdam.org/articles/10.5802/jedp.613/
[An-Mo] Elliptic-hyperbolic systems and the Einstein equations. preprint | MR
and[Ba-Ch1] Équations d'ondes quasilinéaires et estimation de Strichartz. Amer. J. Math., vol. 121; (1999), pp. 1337-1777 | MR | Zbl
and .[Ba-Ch2] Équations d'ondes quasilinéaires et effet dispersif. IMRN, vol. 21; (1999), pp. 1141-1178 | MR | Zbl
and .[Br] Théorème d'existence pour certains systèmes d'équations aux dérivées partielles nonlinéaires., Acta Math. 88 (1952), 141-225. | MR | Zbl
.[Ch-Kl] The Global Nonlinear Stability of the Minkowski Space. Princeton Mathematical Series, 41. Princeton University Press, 1993 | MR | Zbl
and .[Ha-El] The large scale structure of spacetime. Cambridge Monographs on Mathematical Physics, 1973 | MR | Zbl
and .[H-K-M] Well posed quasilinear second order hyperbolic systems Arch. Rat. Mech. Anal. 63 (1976) no 3, 273-294. | MR | Zbl
, and .[Kl1] A commuting vectorfield approach to Strichartz type inequalities and applications to quasilinear wave equations. IMRN, 2001, No 5, 221-274. | MR | Zbl
.[Kl2] PDE as a unified subject Special Volume GAFA 2000, 279-315 XV-12 | MR | Zbl
.[Kl-Ni] On the initial value problem in General Relativity. preprint
and .[Kl-Ro] Improved local well posedness for quasilinear wave equations in dimension three. to appear in Duke Math. Journ. | MR | Zbl
and .[Kl-Ro1] Rough solutions of the Einstein-vacuum equations. preprint | MR
and .[Kl-Ro2] The causal structure of microlocalized, rough, Einstein metrics. preprint | MR
and .[Kl-Ro3] Ricci defects of microlocalized, rough, Einstein metrics. preprint | MR
and .[Li] Counterexamples to local existence for semilinear wave equations. AJM, vol. 118; (1996), pp. 1-16 | MR | Zbl
,[Po-Si] Local regularity of non linear wave equations in three space dimensions. CPDE, vol. 18; (1993), pp. 169-177 | MR | Zbl
and .[Sm] A parametrix construction for wave equations with C 1, 1 coefficients. Annales de L'Institut Fourier, vol. 48; (1998), pp. 797-835 | Numdam | MR | Zbl
.[Sm-So] On Strichartz and eigenfunction estimates for low regularity metrics. Math. Res. Lett., vol. 1; (1994), pp. 729-737 | MR | Zbl
and .[Sm-Ta1] Sharp counterexamples for Strichartz estimates for low regularity metrics. Preprint | MR
and .[Sm-Ta2] Sharp local well-posedness results for the nonlinear wave equation. Preprint
and .[Ta2] Strichartz estimates for second order hyperbolic operators with non smooth coefficients. Preprint
.[Ta1] Strichartz estimates for operators with non smooth coefficients and the nonlinear wave equation.Amer. J. Math., vol. 122; (2000) | MR | Zbl
.Cité par Sources :