For a class of random dynamical systems which describe dissipative nonlinear PDEs perturbed by a bounded random kick-force, I propose a “direct proof” of the uniqueness of the stationary measure and exponential convergence of solutions to this measure, by showing that the transfer-operator, acting in the space of probability measures given the Kantorovich metric, defines a contraction of this space.
@article{JEDP_2001____A9_0, author = {Kuksin, Sergei B.}, title = {On exponential convergence to a stationary measure for a class of random dynamical systems}, journal = {Journ\'ees \'equations aux d\'eriv\'ees partielles}, eid = {9}, pages = {1--10}, publisher = {Universit\'e de Nantes}, year = {2001}, doi = {10.5802/jedp.593}, mrnumber = {1843410}, zbl = {01808685}, language = {en}, url = {http://www.numdam.org/articles/10.5802/jedp.593/} }
TY - JOUR AU - Kuksin, Sergei B. TI - On exponential convergence to a stationary measure for a class of random dynamical systems JO - Journées équations aux dérivées partielles PY - 2001 SP - 1 EP - 10 PB - Université de Nantes UR - http://www.numdam.org/articles/10.5802/jedp.593/ DO - 10.5802/jedp.593 LA - en ID - JEDP_2001____A9_0 ER -
%0 Journal Article %A Kuksin, Sergei B. %T On exponential convergence to a stationary measure for a class of random dynamical systems %J Journées équations aux dérivées partielles %D 2001 %P 1-10 %I Université de Nantes %U http://www.numdam.org/articles/10.5802/jedp.593/ %R 10.5802/jedp.593 %G en %F JEDP_2001____A9_0
Kuksin, Sergei B. On exponential convergence to a stationary measure for a class of random dynamical systems. Journées équations aux dérivées partielles (2001), article no. 9, 10 p. doi : 10.5802/jedp.593. http://www.numdam.org/articles/10.5802/jedp.593/
[Du] Real analysis and probability, Wadsworth&Brooks/Cole, 1989. | MR | Zbl
[KA] Functional analysis (in sbauRussian). Moscow, Nauka, 1977. | MR | Zbl
,[KS1] Stochastic dissipative PDEs and Gibbs measure, Commun. Math. Phys. 213 (2000), 291-330. | MR | Zbl
, ,[KS2] A coupling approach to randomly forced nonlinear PDEs 1, to appear in Commun. Math. Phys. | MR | Zbl
,[KPS] A coupling approach to randomly forced nonlinear PDEs. 2, preprint (April, 2001). | MR
, , ,[Lin] Lectures on the Coupling Methods, New York, John Willey & Sons, 1992. | MR | Zbl
,Cité par Sources :