We prove the global existence of solutions of the Navier-Stokes equations of compressible, barotropic flow in two space dimensions with piecewise smooth initial data. These solutions remain piecewise smooth for all time, retaining simple jump discontinuities in the density and in the divergence of the velocity across a smooth curve, which is convected with the flow. The strengths of these discontinuities are shown to decay exponentially in time, more rapidly for larger acoustic speeds and smaller viscosities.
@incollection{JEDP_2001____A7_0, author = {Hoff, David}, title = {Dynamics of {Singularity} {Surfaces} for {Compressible} {Navier-Stokes} {Flows} in {Two} {Space} {Dimensions}}, booktitle = {}, series = {Journ\'ees \'equations aux d\'eriv\'ees partielles}, eid = {7}, pages = {1--9}, publisher = {Universit\'e de Nantes}, year = {2001}, doi = {10.5802/jedp.591}, mrnumber = {1843408}, zbl = {1005.35075}, language = {en}, url = {http://www.numdam.org/articles/10.5802/jedp.591/} }
TY - JOUR AU - Hoff, David TI - Dynamics of Singularity Surfaces for Compressible Navier-Stokes Flows in Two Space Dimensions JO - Journées équations aux dérivées partielles PY - 2001 SP - 1 EP - 9 PB - Université de Nantes UR - http://www.numdam.org/articles/10.5802/jedp.591/ DO - 10.5802/jedp.591 LA - en ID - JEDP_2001____A7_0 ER -
%0 Journal Article %A Hoff, David %T Dynamics of Singularity Surfaces for Compressible Navier-Stokes Flows in Two Space Dimensions %J Journées équations aux dérivées partielles %D 2001 %P 1-9 %I Université de Nantes %U http://www.numdam.org/articles/10.5802/jedp.591/ %R 10.5802/jedp.591 %G en %F JEDP_2001____A7_0
Hoff, David. Dynamics of Singularity Surfaces for Compressible Navier-Stokes Flows in Two Space Dimensions. Journées équations aux dérivées partielles (2001), article no. 7, 9 p. doi : 10.5802/jedp.591. http://www.numdam.org/articles/10.5802/jedp.591/
[1] Recherches sur l'hydrodynamique Ann. Toulouse 2 1901-03. | JFM | Numdam
[2] Global attractors for the Navier-Stokes equations of three-dimensional compressible flow to appear. | MR
[3] Global solutions of the Navier-Stokes equations for multidimensional, compressible flow with discontinuous initial data, J. Diff. Eqns. 120, no. 1 1995, 215-254. | MR | Zbl
[4] Strong convergence to global solutions for compressible viscous, multidimensional flow, with polytropic equations of state and discontinuous initial data Arch. Rational Mech. Ana. 132 1995, 1-14. | MR | Zbl
[5] Discontinuous solutions of the Navier-Stokes equations for multidimensional, heat conducting flow Archive Rational Mech. Ana. 139 1997, 303-354. | MR | Zbl
[6] Dynamics of Singularity Surfaces for Solutions of the Navier-Stokes Equations of Compressible Flow in Two Space Dimensions in preparation.
[7] Compact attractors for the Navier-Stokes equations of one dimensional, compressible flow C.R. Acad. Sci. Série I 1999, 239-244. | MR | Zbl
and[8] The global attractor and finite determining nodes for the Navier-Stokes equations of compressible flow with singular initial data Indiana Univ. Math. J. 49, no. 3 (2000), 843-889. | MR | Zbl
and[9] Variations de grande amplitude pour la densite d'un fluide visqueux compressible Physica D 48 1991, 113-128. | MR | Zbl
Cité par Sources :