We establish a sharp upper bound for the resonance counting function for a class of asymptotically hyperbolic manifolds in arbitrary dimension, including convex, cocompact hyperbolic manifolds in two dimensions. The proof is based on the construction of a suitable paramatrix for the absolute -matrix that is unitary for real values of the energy. This paramatrix is the -matrix for a model laplacian corresponding to a separable metric near infinity. The proof of the upper bound on the resonance counting function requires estimates on the growth of the relative scattering phase, and singular values of a family of integral operators.
@article{JEDP_2000____A7_0, author = {Froese, R. G. and Hislop, Peter D.}, title = {On the distribution of resonances for some asymptotically hyperbolic manifolds}, journal = {Journ\'ees \'equations aux d\'eriv\'ees partielles}, eid = {7}, pages = {1--16}, publisher = {Universit\'e de Nantes}, year = {2000}, mrnumber = {2001j:58054}, zbl = {01808697}, language = {en}, url = {http://www.numdam.org/item/JEDP_2000____A7_0/} }
TY - JOUR AU - Froese, R. G. AU - Hislop, Peter D. TI - On the distribution of resonances for some asymptotically hyperbolic manifolds JO - Journées équations aux dérivées partielles PY - 2000 SP - 1 EP - 16 PB - Université de Nantes UR - http://www.numdam.org/item/JEDP_2000____A7_0/ LA - en ID - JEDP_2000____A7_0 ER -
Froese, R. G.; Hislop, Peter D. On the distribution of resonances for some asymptotically hyperbolic manifolds. Journées équations aux dérivées partielles (2000), article no. 7, 16 p. http://www.numdam.org/item/JEDP_2000____A7_0/
[1] Group cohomology and the singularities of the Selberg zeta function associated to a Kleinian group, Ann. Math. 149, 627-689 (1999). | MR | Zbl
, ,[2] Spectral asymptotics for compactly supported perturbations of the Laplacian on ℝn, Commun. PDE 23, 933-948 (1998). | MR | Zbl
,[3] Upper bounds for the resonance counting function for the Schrödinger operators in odd dimensions, Canadian J. Math. 50, 538-546 (1ç1998). | MR | Zbl
,[4] Upper bounds for the resonance counting function for some asymptotically hyperbolic manifolds, in preparation.
, ,[5] A Mourre Estimate and Related Bounds for the Laplace Operator on a Hyperbolic Manifold with Cusps of Nonmaximal Rank, J. Funct. Anal. 98, 292-310 (1991). | MR | Zbl
, , ,[6] The Laplace operator on hyperbolic Manifolds with Cusps of Non-maximal Rank, Inventiones Math. 106, 295-333 (1991). | MR | Zbl
, , ,[7] Principe d'absorption limite pour les opérateurs de Schrödinger à longue portée, C. R. Acad. Sci. Paris 306, 121-123 (1988). | Zbl
, ,[8] The geometry and spectra of hyperbolic manifolds, Proc. Indian Acad. Sci. (Math. Sci.) 104, 715-776 (1994). | MR | Zbl
,[9] Polynomial bounds on the number of resonances for some complete spaces of constant negative curvature at infinity, Asymp. Anal. 11, 1-22 (1995). | MR | Zbl
, ,[10] Upper bounds on the number of resonances of non-compact Riemann surfaces, J. Func. Anal. 129, 364-389 (1995). | MR | Zbl
, ,[11] Scattering asymptotics for Riemann surfaces, Ann. of Math. 145, 597-660 (1997). | MR | Zbl
, ,[12] High energy resolvent estimates for generalized many-body Schrödinger operators, Publ. RIMS, Kyoto Univ. 25, 155-167 (1989). | MR | Zbl
,[13] Inverse scattering on asymptotically hyperbolic manifolds, Acta Math. 2000. | MR | Zbl
, ,[14] Scattering theory for automorphic functions, Ann. Math. Studies 87, Princeton : Princeton University Press, 1976. | MR | Zbl
, ,[15] Scattering operator and Eisenstein integral for Kleinian groups, Math. Proc. Cambridge Philos. Soc. 108, 203-217 (1990). | MR | Zbl
,[16] Meromorphic extension of the resolvent on complete spaces with asymptotically constant negative curvature, J. Funct. Anal. 75, 260-310 (1987). | MR | Zbl
, ,[17] The Laplacian operator on a Riemann surface, I, II, and III, Compositio math. 31, 83-107 (1975) ; 32, 71-112 (1976) ; 33, 227-259 (1976). | Numdam | MR | Zbl
,[18] Divisor of the Selberg Zeta function, I. Even Dimensions, to appear in Duke Math. J. 2000.
, ,[19] The Laplace operator on a hyperbolic manifold. II. Eisenstein series and the scattering matrix, J. reine. angew. Math. 398, 67-91 (1989). | MR | Zbl
,[20] The Selberg zeta function and a local trace formula for Kleinian groups, J. reine. angew. Math. 410, 116-152 (1990). | MR | Zbl
,[21] The Selberg Zeta function and scattering poles for Kleinian groups, Bull. Amer. Math. Soc. (N. S.) 24, 327-333 (1991). | MR | Zbl
,[22] Poisson formula and lower bounds on resonances for hyperbolic manifolds, preprint 2000.
,[23] On the Weyl formula for obstacles, in «Partial differential equations and mathematical physics», 264-285, Progress in Nonlinear Differential Equations and their Applications, Boston : Birhäuser, 1996. | MR | Zbl
,[24] Asymptotique de la phase de diffusion à haute énergie pours les perturbations de second ordre du Laplacien, Ann. Scien. Ecole Norm. Sup. 25, 107-124 (1992). | Numdam | MR | Zbl
,[25] Sharp bounds on the number of scattering poles for perturbations of the Laplacian, Commun. Math. Phys. 146, 205-216 (1992). | MR | Zbl
,[26] Dimension of the limit set and the density of resonances for convex co-compact hyperbolic surfaces, to appear in Inventionnes math. 1999. | MR | Zbl
,[27] Counting Scattering Poles, in Spectral and Scattering Theory, M. Ikawa, ed., Marcel Decker, 1994. | MR | Zbl
,