We describe the recent joint work of the author with David M. J. Calderbank and Paul Gauduchon on refined Kato inequalities for sections of vector bundles living in the kernel of natural first-order elliptic operators.
@incollection{JEDP_2000____A6_0, author = {Herzlich, Marc}, title = {Refined {Kato} inequalities in riemannian geometry}, booktitle = {}, series = {Journ\'ees \'equations aux d\'eriv\'ees partielles}, eid = {6}, pages = {1--11}, publisher = {Universit\'e de Nantes}, year = {2000}, language = {en}, url = {http://www.numdam.org/item/JEDP_2000____A6_0/} }
Herzlich, Marc. Refined Kato inequalities in riemannian geometry. Journées équations aux dérivées partielles (2000), article no. 6, 11 p. http://www.numdam.org/item/JEDP_2000____A6_0/
[1] On a construction of coordinates at infinity on manifolds with fast curvature decay and maximal volume growth, Invent. Math. 97 (1989), 313-349. | MR | Zbl
, and ,[2] From vanishing theorems to estimating theorems : the Bochner technique revisited, Bull. Amer. Math. Soc. 19 (1988), 371-406. | MR | Zbl
,[3] The magic of Weitzenböck formulas, in Variational methods (Paris, 1988), H. Brezis, J. M. Coron and I. Ekeland eds, PNLDE vol. 4, Birkhäuser, Zürich, 1990. | Zbl
,[4] Stein-Weiss operators and ellipticity, J. Funct. Anal. 151 (1997), 334-383. | MR | Zbl
,[5] Kato constants in Riemannian geometry, Preprint (1999), to appear in Math. Res. Lett. | Zbl
,[6] Refined Kato inequalities and conformal weights in Riemannian geometry, J. Funct. Anal. 173 (2000), 214-255. | MR | Zbl
, , and ,[7] On the Kato inequality in Riemannian Geometry, to appear in Analyse harmonique et analyse sur les variétés, Proc. of the Luminy conf., 1-6 June 1999 (J. P. Bourguignon and O. Hijazi, eds.).
, , and ,[8] Representation Theory - A First Course, Grad. Text. Math. vol. 129, Springer, 1991. | MR | Zbl
and ,[9] Structures de Weyl et théorèmes d'annulation sur une variété conforme autoduale, Ann. Sc. Norm. Sup. Pisa 18 (1991), 563-629. | Numdam | MR | Zbl
,[10] Kato's inequality and the spectral distribution of Laplacians on compact Riemannian manifolds, J. Diff. Geom. 15 (1980), 27-38. | MR | Zbl
, and ,[11] Decay estimates for Yang-Mills fields : two new proofs, Global analysis in modern mathematics (Orono, 1991, Waltham, 1992), Publish or Perish, Houston, 1993, pp. 91-105. | MR | Zbl
,[12] Curvature estimates for minimal hypersurfaces, Acta Math. 134 (1975), 275-288. | MR | Zbl
, and ,[13] Removable singularities for Yang-Mills fields, Commun. Math. Phys. 83 (1982), 11-30. | MR | Zbl
,