We consider perturbations of a stratified medium , where the operator studied is . The function is a perturbation of , which is constant for sufficiently large and satisfies some other conditions. Under certain restrictions on the perturbation , we give results on the Fourier integral operator structure of the scattering matrix. Moreover, we show that we can recover the asymptotic expansion at infinity of from knowledge of and the singularities of the scattering matrix at fixed energy.
@article{JEDP_2000____A2_0, author = {Christiansen, Tanya and Joshi, Mark S.}, title = {Recovering {Asymptotics} at {Infinity} of {Perturbations} of {Stratified} {Media}}, journal = {Journ\'ees \'equations aux d\'eriv\'ees partielles}, eid = {2}, pages = {1--9}, publisher = {Universit\'e de Nantes}, year = {2000}, mrnumber = {2001g:35261}, zbl = {01808692}, language = {en}, url = {http://www.numdam.org/item/JEDP_2000____A2_0/} }
TY - JOUR AU - Christiansen, Tanya AU - Joshi, Mark S. TI - Recovering Asymptotics at Infinity of Perturbations of Stratified Media JO - Journées équations aux dérivées partielles PY - 2000 SP - 1 EP - 9 PB - Université de Nantes UR - http://www.numdam.org/item/JEDP_2000____A2_0/ LA - en ID - JEDP_2000____A2_0 ER -
Christiansen, Tanya; Joshi, Mark S. Recovering Asymptotics at Infinity of Perturbations of Stratified Media. Journées équations aux dérivées partielles (2000), article no. 2, 9 p. http://www.numdam.org/item/JEDP_2000____A2_0/
[1] Inverse scattering in a layered medium, C.R. Acad. Sci Paris Sér. I Math 329 (1999), no. 10, 927-932. | MR | Zbl
,[2] Spectral and scattering theory for wave propagation in perturbed stratified media, J. Math. Analysis and Applications 191 (1995), 137-167. | MR | Zbl
and ,[3] Scattering theory for perturbed stratified media. Journal d'Analyse Mathématique 76 (1998), 1-44. | MR | Zbl
,[4] Spectral analysis for optical fibres and stratified fluids II: absence of eigenvalues, Commun. Partial Differential Equations 17 (1&2) (1992), 69-97. | MR | Zbl
and ,[5] Théorie spectrale et la propagation des ondes acoustiques dans un milieu stratifié perturbé, J. Differential Equations 62 No. 3 (1986), 357-409. | MR | Zbl
and ,[6] Commutator algebra and resolvent estimates, volume 23 of Advanced studies in pure mathematics, p. 69-82, 1994. | MR | Zbl
, , and ,[7] Inverse scattering at fixed energy for layered media, J. Math. Pures Appl. (9) 78 (1999), 27-48. | MR | Zbl
and ,[8] Groups and Geometric Analysis, Academic Press, Orlando, 1984. | MR | Zbl
,[9] Inverse scattering for wave equations in stratified media, J. Differential Equations 138 (1997), 19-54. | MR | Zbl
,[10] Explicitly Recovering Asymptotics of Short Range Potentials, to appear in Communications on Partial Differential Equations. | Zbl
,[11] Recovering Asymptotics of Short Range Potentials, Comm. Math. Phys. 193 (1998), 197-208. | MR | Zbl
and ,[12] Recovering Asymptotics of Metrics from Fixed Energy Scattering Data, Invent. Math. 137 (1999) 127-143. | MR | Zbl
and ,[13] Spectral and Scattering Theory for the Laplacian on Asymptotically Euclidean spaces, in Spectral and Scattering Theory (M. Ikawa, ed), p. 85-130, Marcel Dekker, New York, 1994. | MR | Zbl
,[14] Scattering Metrics and Geodesic Flow at Infinity, Invent. Math. 124 (1996), 389-436. | MR | Zbl
and ,[15] Asymptotic behavior of generalized eigenfunctions in N-body scattering, J. Funct. Anal. 148 (1997), no. 1, 170-184. | MR | Zbl
,[16] Structure of the resolvent for three-body potentials, Duke Math. J. 90 (1997), no. 2, 379-434. | MR | Zbl
,[17] Spectral and scattering theory for wave propagation in perturbed stratified media, Springer-Verlag, New York, 1991. | MR | Zbl
,[18] Multidimensional inverse problems in perturbed stratified media, J. Differential Equations 152 (1999), no. 1, 191-239. | MR | Zbl
,[19] Sound Propagation in Stratified Fluids, Applied Mathematical Sciences 50. Springer-Verlag, New York, Berlin, Heidelberg. | MR | Zbl
,