We survey some recent results for the KP-II equation. We also give an idea for treating the “bad frequency interactions” of the bilinear estimates in the Fourier transform restriction spaces related to the KP-I equation.
@incollection{JEDP_2000____A19_0, author = {Tzvetkov, Nikolay}, title = {Bilinear estimates related to the {KP} equations}, booktitle = {}, series = {Journ\'ees \'equations aux d\'eriv\'ees partielles}, eid = {19}, pages = {1--12}, publisher = {Universit\'e de Nantes}, year = {2000}, mrnumber = {2001f:35358}, language = {en}, url = {http://www.numdam.org/item/JEDP_2000____A19_0/} }
Tzvetkov, Nikolay. Bilinear estimates related to the KP equations. Journées équations aux dérivées partielles (2000), article no. 19, 12 p. http://www.numdam.org/item/JEDP_2000____A19_0/
[1] Fourier transform restriction phenomena for certain lattice subsets and application to nonlinear evolution equations I. Schrödinger equations, GAFA 3 (1993), 107-156, II. The KdV equation, GAFA 3 (1993), 209-262. | Zbl
,[2] On the Cauchy problem for the Kadomtsev-Petviashvili equation, GAFA 3 (1993), 315-341. | MR | Zbl
,[3] Refinements of Strichartz inequality and applications to 2D-NLS with critical nonlinearity, IMRN 5 (1998), 145-171. | MR | Zbl
,[4] Local well-posedness and regularity properties of solutions of the generalized Kadomtsev-Petviashvili equations, in preparation.
, , ,[5] An Xs,b space approach to local well-posedness of Kadomtsev-Petviashvili-I equation, in preparation.
, , ,[6] Global well-posedness for KdV below L2, MRL 6 (2000), 755-778. | MR | Zbl
, , ,[7] Global well-posedness for the modified Korteweg- de Vries equation, Comm. PDE 24 (1999), 683-705. | MR | Zbl
, , ,[8] Le problème de Cauchy pour des EDP semi-linéaires périodiques en variables d'espace, Séminaire Bourbaki, 796 (1995). | Numdam | Zbl
,[9] Problemas de Cauchy local y global para la ecuacion de Kadomtsev-Petviashvili (KP-II) en espacios de Sobolev con indices negativos, Preprint.
, ,[10] Local and global well-posedness of wave maps on ℝ1+1 with rough data, IMRN, 21 (1998), 1117-1156. | MR | Zbl
,[11] Well-posedness of the initial value problem for the Korteweg-de Vries equation, J. AMS, 4 (1991), 323-347. | MR | Zbl
, , ,[12] The Cauchy problem for the Korteweg-de Vries equation in Sobolev spaces of negative indices, Duke Math. J., 71 (1993), 1-21. | MR | Zbl
, , ,[13] A bilinear estimate with applications to the KdV equations, J. AMS, 9 (1996), 573-603. | MR | Zbl
, , ,[14] Global well-posedness for semilinear wave equations, Preprint. | Zbl
, , ,[15] On the KP-I equation, in preparation.
, , ,[16] Global well-posedness below energy space for the 1D Zakharov system, Preprint. | Zbl
,[17] Remarks on the generalized Kadomtsev-Petviashvili equations, Indiana Univ. Math. J., 42 (1993), 1017-1029. | MR | Zbl
,[18] The Cauchy problem for the fifth order KP equations, J. Math. Pures Appl. (2000), 307-338. | MR | Zbl
, ,[19] Periodic solutions of Kadomtsev-Petviashvili, Adv. Math. 66 (1987), 217-233. | MR | Zbl
,[20] Global well-posedness for the Kadomtsev-Petviashvili II equation, Discrete Contin. Dynam. Systems 6 (2000), 483-499. | MR | Zbl
,[21] On the local regularity of Kadomtsev-Petviashvili-II equation, Preprint, Orsay 1999. | Zbl
, ,[22] On 2D dispersive models, in preparation.
, ,[23] Global low regularity solutions for Kadomtsev-Petviashvili equation, Diff. Int. Eq. (to appear). | Zbl
,