We prove that the initial value problem for the semi-linear Schrödinger and wave equations is well-posed in the Besov space , when the nonlinearity is of type , for . This allows us to obtain self-similar solutions, as well as to recover previously known results for the solutions under weaker smallness assumptions on the data.
@article{JEDP_1999____A9_0, author = {Planchon, Fabrice}, title = {Self-similar solutions and {Besov} spaces for semi-linear {Schr\"odinger} and wave equations}, journal = {Journ\'ees \'equations aux d\'eriv\'ees partielles}, eid = {9}, pages = {1--11}, publisher = {Universit\'e de Nantes}, year = {1999}, zbl = {01810582}, language = {en}, url = {http://www.numdam.org/item/JEDP_1999____A9_0/} }
TY - JOUR AU - Planchon, Fabrice TI - Self-similar solutions and Besov spaces for semi-linear Schrödinger and wave equations JO - Journées équations aux dérivées partielles PY - 1999 SP - 1 EP - 11 PB - Université de Nantes UR - http://www.numdam.org/item/JEDP_1999____A9_0/ LA - en ID - JEDP_1999____A9_0 ER -
Planchon, Fabrice. Self-similar solutions and Besov spaces for semi-linear Schrödinger and wave equations. Journées équations aux dérivées partielles (1999), article no. 9, 11 p. http://www.numdam.org/item/JEDP_1999____A9_0/
[1] Interpolation Spaces, An Introduction. Springer-Verlag, 1976. | Zbl
and .[2] Calcul symbolique et propagation des singularités dans les équations aux dérivées partielles non linéaires. Ann. Sci. Ecole Norm. Sup., 14:209-246, 1981. | Numdam | MR | Zbl
.[3] Refinements of Strichartz inequality and applications to 2-D NLS with critical nonlinearity. I.M.R.N., 5:253-283, 1998. | MR | Zbl
.[4] Ondelettes, Paraproduits et Navier-Stokes. Diderot Editeurs, Paris, 1995. | MR | Zbl
.[5] The Cauchy problem for the critical nonlinear Schrödinger equation in Hs. Nonlinear Anal. T.M.A., 14:807-836, 1990. | MR | Zbl
and .[6] Asymptotically self-similar global solutions of the non linear Schrödinger and heat equations. Math. Zeit., 228:83-120, 1998. | MR | Zbl
and .[7] More self-similar solutions of the nonlinear Schrödinger equation. No D.E.A., 5:355-365, 1998. | MR | Zbl
and .[8] The global Cauchy problem for the NLS equation revisited. Ann. IHP, An. non-linéaire, 2:309-327, 1985. | Numdam | MR | Zbl
and .[9] Enpoint Strichartz estimates. American Journal of Mathematics, 120(5):955-980, 1998. | MR | Zbl
and .[10] On existence and scattering with minimal regularity for semilinear wave equations. J. funct. Anal., 130:357-426, 1995. | MR | Zbl
and .[11] Convolution operators and L(p,q) spaces. Duke Mathematical Journal, 30:129-142, 1963. | MR | Zbl
.[12] Rôle des oscillations dans quelques problèmes d'analyse non-linéaire. PhD thesis, ENS Cachan, 1998.
.[13] Self-similar and asymptotically self-similar solutions of nonlinear wave equations. preprint. | Zbl
.[14] New thoughts on Besov Spaces. Duke Univ. Math. Series. Duke University, Durham, 1976. | MR | Zbl
.[15] On the Cauchy problem in Besov spaces for a non-linear Schrödinger equation. preprint. | Zbl
.[16] Self-similar solutions and semi-linear wave equations in Besov spaces. preprint. | Zbl
.[17] Asymptotic Behavior of Global Solutions to the Navier-Stokes Equations. Rev. Mat. Iberoamericana, 14(1), 1998. | MR | Zbl
.[18] Solutions autosimilaires et espaces de données initiales pour une équation de Schrödinger non-linéaire. C. R. Acad. Sci. Paris, 328, 1999. | MR | Zbl
.[19] Self-similar solutions of nonlinear wave equation. preprint. | Zbl
and .[20] Regular and self-similar solutions of nonlinear Schrödinger equations. J. Math. Pures Appl., 9(10):1065-1079, 1998. | MR | Zbl
and .[21] Solutions globales et solutions auto-similaires de l'équation des ondes non linéaire. C. R. Acad. Sci. Paris, 328, 1999. | MR | Zbl
and .[22] Restriction of Fourier transform to quadratic surfaces and decay of solutions of the wave equations. Duke Mathematical Journal, 44:705-714, 1977. | MR | Zbl
.[23] Low regularity semi-linear wave equations. Comm. in Partial Diff. Equations, 24(3&4):599-629, 1999. | MR | Zbl
.