The aim of this work is threefold. First we set up a calculus for partial differential operators with nonsmooth coefficients which is based on the FBI (Fourier-Bros-Iagolnitzer) transform. Then, using this calculus, we prove a weaker version of the Strichartz estimates for second order hyperbolic equations with nonsmooth coefficients. Finally, we apply these new Strichartz estimates to second order nonlinear hyperbolic equations and improve the local theory, i.e. prove local well-posedness for initial data which is less regular than the classical threshold.
@article{JEDP_1999____A14_0, author = {Tataru, Daniel}, title = {The {FBI} transform, operators with nonsmooth coefficients and the nonlinear wave equation}, journal = {Journ\'ees \'equations aux d\'eriv\'ees partielles}, eid = {14}, pages = {1--16}, publisher = {Universit\'e de Nantes}, year = {1999}, mrnumber = {2000h:35114}, language = {en}, url = {http://www.numdam.org/item/JEDP_1999____A14_0/} }
TY - JOUR AU - Tataru, Daniel TI - The FBI transform, operators with nonsmooth coefficients and the nonlinear wave equation JO - Journées équations aux dérivées partielles PY - 1999 SP - 1 EP - 16 PB - Université de Nantes UR - http://www.numdam.org/item/JEDP_1999____A14_0/ LA - en ID - JEDP_1999____A14_0 ER -
Tataru, Daniel. The FBI transform, operators with nonsmooth coefficients and the nonlinear wave equation. Journées équations aux dérivées partielles (1999), article no. 14, 16 p. http://www.numdam.org/item/JEDP_1999____A14_0/
[1] Equations d'ondes quasilineaires et effet dispersif. preprint.
and .[2] Equations d'ondes quasilineaires et estimations de strichartz. preprint.
and .[3] On Lp - Lp' estimates for the wave-equation. Math. Z., 145(3):251-254, 1975. | Zbl
.[4] Generalized Strichartz inequalities for the wave equation. J. Funct. Anal., 133(1):50-68, 1995. | MR | Zbl
and .[5] Well-posed quasilinear second-order hyperbolic systems with applications to nonlinear elastodynamics and general relativity. Arch. Rational Mech. Anal., 63(3):273-294 (1977), 1976. | Zbl
, , and .[6] Endpoint Strichartz estimates. Amer. J. Math., 120(5):955-980, 1998. | MR | Zbl
and .[7] Counterexamples to local existence for semi-linear wave equations. Amer. J. Math., 118(1):1-16, 1996. | MR | Zbl
.[8] Counterexamples to local existence for quasilinear wave equations. Math. Res. Lett., 5(5):605-622, 1998. | MR | Zbl
.[9] Local smoothing of Fourier integral operators and Carleson-Sjölin estimates. J. Amer. Math. Soc., 6(1):65-130, 1993. | Zbl
, , and .[10] Singularités analytiques microlocales. In Astérisque, 95, pages 1-166. Soc. Math. France, Paris, 1982. | Numdam | MR | Zbl
.[11] Function spaces associated to global I-Lagrangian manifolds. In Structure of solutions of differential equations (Katata/Kyoto, 1995), pages 369-423. World Sci. Publishing, River Edge, NJ, 1996. | Zbl
.[12] A parametrix construction for wave equations with C1,1 coefficients. Ann. Inst. Fourier (Grenoble), 48(3):797-835, 1998. | Numdam | Zbl
.[13] On Strichartz and eigenfunction estimates for low regularity metrics. Math. Res. Lett., 1(6):729-737, 1994. | MR | Zbl
and .[14] Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations. Duke Math. J., 44(3):705-714, 1977. | MR | Zbl
.[15] On the equation ∇u = |⎕u|2 in 5 + 1 dimensions. preprint, http://www.math.nwu/tataru/nlw.
.[16] Strichartz estimates for operators with nonsmooth coefficients and the nonlinear wave equation. preprint, http://www.math.nwu/tataru/nlw.
.[17] Strichartz estimates for operators with nonsmooth coefficients iii. preprint, http://www.math.nwu/tataru/nlw.
.[18] Strichartz estimates for second order hyperbolic operators with nonsmooth coefficients ii. preprint, http://www.math.nwu/tataru/nlw.
.[19] Pseudodifferential operators and nonlinear PDE. Birkhäuser Boston Inc., Boston, MA, 1991. | Zbl
.