Large time behaviour of heat kernels on non-compact manifolds : fast and slow decays
Journées équations aux dérivées partielles (1998), article no. 2, 12 p.

In this talk we shall present some joint work with A. Grigory’an. Upper and lower estimates on the rate of decay of the heat kernel on a complete non-compact riemannian manifold have recently been obtained in terms of the geometry at infinity of the manifold, more precisely in terms of a kind of L 2 isoperimetric profile. The main point is to connect the decay of the L 1 -L norm of the heat semigroup with some adapted Nash or Faber-Krahn inequalities, which is done by functional analytic methods. We shall give an outline of these results and show how they can give some answers to the following question: given the volume growth of a manifold, e.g. polynomial or exponential, how fast and how slow can the heat kernel decay be?

@incollection{JEDP_1998____A2_0,
     author = {Coulhon, Thierry},
     title = {Large time behaviour of heat kernels on non-compact manifolds : fast and slow decays},
     booktitle = {},
     series = {Journ\'ees \'equations aux d\'eriv\'ees partielles},
     eid = {2},
     pages = {1--12},
     publisher = {Universit\'e de Nantes},
     year = {1998},
     zbl = {01808712},
     language = {en},
     url = {http://www.numdam.org/item/JEDP_1998____A2_0/}
}
TY  - JOUR
AU  - Coulhon, Thierry
TI  - Large time behaviour of heat kernels on non-compact manifolds : fast and slow decays
JO  - Journées équations aux dérivées partielles
PY  - 1998
SP  - 1
EP  - 12
PB  - Université de Nantes
UR  - http://www.numdam.org/item/JEDP_1998____A2_0/
LA  - en
ID  - JEDP_1998____A2_0
ER  - 
%0 Journal Article
%A Coulhon, Thierry
%T Large time behaviour of heat kernels on non-compact manifolds : fast and slow decays
%J Journées équations aux dérivées partielles
%D 1998
%P 1-12
%I Université de Nantes
%U http://www.numdam.org/item/JEDP_1998____A2_0/
%G en
%F JEDP_1998____A2_0
Coulhon, Thierry. Large time behaviour of heat kernels on non-compact manifolds : fast and slow decays. Journées équations aux dérivées partielles (1998), article  no. 2, 12 p. http://www.numdam.org/item/JEDP_1998____A2_0/

[1] Bakry D., Coulhon T., Ledoux M., Saloff-Coste L., Sobolev inequalities in disguise, Indiana Univ. Math. J., 44, 4, 1033-1074, 1995. | MR | Zbl

[2] Carron G., Inégalités isopérimétriques sur les variétés riemanniennes. Thesis, University of Grenoble, 1994.

[3] Carron G., Inégalités isopérimétriques de Faber-Krahn et conséquences, in Actes de la table ronde de géométrie différentielle en l'honneur de Marcel Berger, Collection SMF Séminaires et congrès, no 1, 205-232, 1994. | MR | Zbl

[4] Coulhon T., Dimensions at infinity for Riemannian manifolds, Potential Anal., 4, 4, 335-344, 1995. | MR | Zbl

[5] Coulhon T., Espaces de Lipschitz et inégalités de Poincaré, J. Funct. Anal., 136, 1, 81-113, 1996. | MR | Zbl

[6] Coulhon T., Ultracontractivity and Nash type inequalities, J. Funct. Anal., 141, 2, 510-539, 1996. | MR | Zbl

[7] Coulhon T., Heat kernels on non-compact Riemannian manifolds : a partial survey, Séminaire de théorie spectrale et géométrie, 15 (1996-1997), Institut Fourier, 167-187, 1998. | Numdam | MR | Zbl

[8] Coulhon T., Analysis on graphs with regular volume growth, to appear in Proceedings of the 1997 Cortona conference on Random walks and discrete potential theory, Cambridge U.P.

[9] Coulhon T., Grigor'Yan A., On-diagonal lower bounds for heat kernels on non-compact Riemannian manifolds, Duke Math. J., 89, 1, 133-199, 1997. | MR | Zbl

[10] Coulhon T., Grigor'Yan A., Manifolds with big heat kernels, preprint.

[11] Coulhon T., Ledoux M., Isopérimétrie, décroissance du noyau de la chaleur et transformations de Riesz : un contre-exemple, Arkiv för Mat., 32, 63-77, 1994. | MR | Zbl

[12] Coulhon T., Saloff-Coste L., Isopérimétrie pour les groupes et les variétés, Rev. Mat. Iberoamer., 9, 2, 293-314, 1993. | EuDML | MR | Zbl

[13] Coulhon T., Saloff-Coste L., Variétés riemanniennes isométriques à l'infini, Rev. Mat. Iberoamer., 11, 3, 687-726, 1995. | EuDML | MR | Zbl

[14] Coulhon T., Saloff-Coste L., Harnack inequality and hyperbolicity for the p- Laplacian with applications to Picard type theorems, preprint. | Zbl

[15] Grigor'Yan A., The heat equation on non-compact Riemannian manifolds, in Russian : Matem. Sbornik, 182, 1, 55-87, 1991 ; English translation : Math. USSR Sb., 72, 1, 47-77, 1992. | MR | Zbl

[16] Grigor'Yan A., Heat kernel upper bounds on a complete non-compact manifold, Rev. Mat. Iberoamericana, 10, 2, 395-452, 1994. | EuDML | MR | Zbl

[17] Grigor'Yan A., Heat kernel on a non-compact Riemannian manifold, in 1993 Summer research institute on stochastic analysis, ed. M. Pinsky et alia, Proceedings of Symposia in Pure Math., 57, 239-263, 1994. | MR | Zbl

[18] Pittet C., Saloff-Coste L., Amenable groups, isoperimetric profiles, and random walks, in Proceedings of the 1996 Canberra Geometric group theory conference, 1997. | Zbl