Solutions self-similaires de l'équation de Schrödinger non-linéaire
Journées équations aux dérivées partielles (1997), article no. 2, 17 p.
@article{JEDP_1997____A2_0,
     author = {Cazenave, Thierry},
     title = {Solutions self-similaires de l'\'equation de {Schr\"odinger} non-lin\'eaire},
     journal = {Journ\'ees \'equations aux d\'eriv\'ees partielles},
     eid = {2},
     pages = {1--17},
     publisher = {Ecole polytechnique},
     year = {1997},
     zbl = {01808662},
     language = {fr},
     url = {http://www.numdam.org/item/JEDP_1997____A2_0/}
}
TY  - JOUR
AU  - Cazenave, Thierry
TI  - Solutions self-similaires de l'équation de Schrödinger non-linéaire
JO  - Journées équations aux dérivées partielles
PY  - 1997
SP  - 1
EP  - 17
PB  - Ecole polytechnique
UR  - http://www.numdam.org/item/JEDP_1997____A2_0/
LA  - fr
ID  - JEDP_1997____A2_0
ER  - 
%0 Journal Article
%A Cazenave, Thierry
%T Solutions self-similaires de l'équation de Schrödinger non-linéaire
%J Journées équations aux dérivées partielles
%D 1997
%P 1-17
%I Ecole polytechnique
%U http://www.numdam.org/item/JEDP_1997____A2_0/
%G fr
%F JEDP_1997____A2_0
Cazenave, Thierry. Solutions self-similaires de l'équation de Schrödinger non-linéaire. Journées équations aux dérivées partielles (1997), article  no. 2, 17 p. http://www.numdam.org/item/JEDP_1997____A2_0/

[1] M. Cannone, A generalization of a theorem by Kato on Navier-Stokes equations, preprint. | Zbl

[2] M. Cannone and F. Planchon, Self-similar solutions for the Navier-Stokes equations in ℝ3, Comm. Partial Differential Equations 21 (1996), 179-193. | MR | Zbl

[3] T. Cazenave and F. B. Weissler, The Cauchy problem for the critical nonlinear Schrödinger equation in Hs, Nonlinear Anal. T.M.A. 14 (1990), 807-836. | MR | Zbl

[4] T. Cazenave and F. B. Weissler, The structure of solutions to the pseudo-conformally invariant nonlinear Schrödinger equation, Proc. Royal Soc. Edinburgh Sect. A 117 (1991), 251-273. | MR | Zbl

[5] T. Cazenave and F. B. Weissler, Rapidly decaying solutions of the nonlinear Schrödinger equation, Comm. Math. Phys. 147 (1992), 75-100. | MR | Zbl

[6] T. Cazenave and F. B. Weissler, Asymptotically self-similar global solutions of the nonlinear Schrödinger and heat equations, Math. Z., to appear. | Zbl

[7] T. Cazenave and F. B. Weissler, More self-similar solutions of the nonlinear Schrödinger equation, to appear. | Zbl

[8] M. Escobedo and O. Kavian, Asymptotic behavior of positive solutions of a nonlinear heat equation, Houston J. Math. 13 (1987), 39-50. | Zbl

[9] M. Escobedo and O. Kavian, Variational problems related to self-similar solutions of the heat equation, Nonlinear Anal. 11 (1987), 1103-1133. | MR | Zbl

[10] M. Escobedo, O. Kavian and H. Matano, Large time behavior of solutions of a dissipative semi-linear heat equation, Comm. Partial Differential Equations 20 (1995), 1427-1452. | MR | Zbl

[11] H. Fujita, On the blowing-up of solutions of the Cauchy problem for ut = Δu + uα+1, J. Fac. Sci. Univ. Tokyo 13 (1966), 109-124. | MR | Zbl

[12] H. Fujita, On some nonexistence and nonuniqueness theorems for nonlinear parabolic equations, Proc. Symp. Pure Math. 18, Amer. Math. Soc., 1968, 138-161.

[13] H. Fujita and T. Kato, On the Navier-Stokes initial value problem I, Arch. Rat. Mech. Anal. 16 (1964), 269-315. | MR | Zbl

[14] Y. Giga, Solutions for semilinear parabolic equations in Lp and regularity of weak solutions of the Navier-Stokes system, J. Diff. Eq. 62 (1986), 186-212. | MR | Zbl

[15] Y. Giga and R.V. Kohn, Asymptotically self-similar blow-up of semilinear heat equations, Comm. Pure Appl. Math. 38 (1985), 297-319. | MR | Zbl

[16] Y. Giga and R.V. Kohn, Characterizing blow up using similarity variables, Indiana Math. J. 36 (1987), 1-40. | MR | Zbl

[17] Y. Giga and R.V. Kohn, Nondegeneracy of blowup for semilinear heat equations, Comm. Pure Appl. Math. 62 (1989), 845-885. | MR | Zbl

[18] Y. Giga and T. Miyakawa, Solutions in Lr of the Navier-Stokes initial value problem, Arch. Rat. Mech. Anal. 89 (1985), 267-281. | MR | Zbl

[19] Y. Giga and T. Miyakawa, Navier-Stokes flow in ℝ3 with measures as initial vorticity and Morrey spaces, Commun. Partial Differential Equations 14 (1989), 577-618. | MR | Zbl

[20] J. Ginibre and G. Velo, On a class of nonlinear Schrödinger equations I, II, J. Func. Anal. 32 (1979), 1-71. | MR | Zbl

[21] A. Haraux and F.B. Weissler, Non uniqueness for a semilinear initial value problem, Indiana Univ. Math. J. 31 (1982), 167-189. | MR | Zbl

[22] M.A. Herrero and J.J.L. Velázquez, Blow-up behaviour of one-dimensional semilinear parabolic equations, Ann. Inst. Henri Poincaré, Analyse Non-Linéaire 10 (1993), 131-189. | EuDML | Numdam | MR | Zbl

[23] M.A. Herrero and J.J.L. Velázquez, Some results on blow up for some semilinear parabolic problems, in Degenerate diffusion (Minneapolis, 1991), IMA Vol. Math. Appl. 47, Springer, New York, 1993, 105-125. | MR | Zbl

[24] R. Johnson and X. Pan, On an elliptic equation related to the blow-up phenomenon in the non-linear Schrödinger equation, Proc. Royal Soc. Edin. Sect. A 123 (1993), 763-782. | MR | Zbl

[25] T. Kato, Strong Lp solutions of the Navier-Stokes equation in ℝm, with applications to weak solutions, Math. Z. 187 (1984), 471-480. | EuDML | MR | Zbl

[26] T. Kato, Nonlinear Schrödinger equations, in Schrödinger Operators, Lecture Notes in Physics 345, Springer, 1989, 218-263. | MR | Zbl

[27] T. Kato and H. Fujita, On the nonstationary Navier-Stokes system, Rend. Sem. Mat. Univ. Padova 32 (1962), 243-260. | EuDML | Numdam | MR | Zbl

[28] O. Kavian, Remarks on the time behaviour of a nonlinear diffusion equation, Ann. Inst. Henri Poincaré, Analyse Non Linéaire 4 (1987), 423-452. | EuDML | Numdam | MR | Zbl

[29] O. Kavian and F. B. Weissler, Self-similar solutions of the pseudo-conformally invariant nonlinear Schrödinger equation, Mich. Math. J. 41 (1992), 151-173. | MR | Zbl

[30] N. Kopell and M. Landman, Spatial structure of the focusing singularity of the nonlinear Schrödinger equation: a geometric analysis, SIAM J. Appl. Math. 55 (1995), 1297-1323. | MR | Zbl

[31] L.A. Peletier, D. Terman and F.B. Weissler, On the equation Δu + 1/2x · ∇u - u + f(u) = 0, Archive Rat. Mech. Anal. 94 (1986), 83-99. | MR | Zbl

[32] F. Ribaud, Analyse de Littlewood Paley pour la résolution d'équations paraboliques semi-linéaires, Doctoral Thesis, University of Paris XI, January 1996.

[33] F. B. Weissler, Existence and non-existence of global solutions for a semilinear heat equation, Israel J. Math. 38 (1981), 29-40. | MR | Zbl