@article{JEDP_1997____A18_0, author = {Zworski, Maciej}, title = {Distribution of resonances for convex co-compact hyperbolic surfaces}, journal = {Journ\'ees \'equations aux d\'eriv\'ees partielles}, eid = {18}, pages = {1--9}, publisher = {Ecole polytechnique}, year = {1997}, mrnumber = {98k:58236}, language = {en}, url = {http://www.numdam.org/item/JEDP_1997____A18_0/} }
Zworski, Maciej. Distribution of resonances for convex co-compact hyperbolic surfaces. Journées équations aux dérivées partielles (1997), article no. 18, 9 p. http://www.numdam.org/item/JEDP_1997____A18_0/
[1] Semiclassical resonances generated by a closed trajectory of hyperbolic type. Comm. Math. Phys. 108 (1987), 391-421. | MR | Zbl
and ,[2] Sur la distribution des longeurs des géodesiques fermées d'une surface compacte à bord totalement géodesique. Duke Math. J. 53 (1986), 827-848. | MR | Zbl
,[3] Fonctions Zêta de Selberg et surfaces de géométrie finie. Advanced Studies in Pure Mathematics 21 (1992), 33-70. | MR | Zbl
,[4] Upper bounds on the number of resonances for non-compact Riemann surfaces. J. Func. Anal. 129 (1995), 364-389. | MR | Zbl
and ,[5] Polynomial bounds on the number of resonances for some complete spaces of constant negative curvature near infinity. Asymp. Anal. 11 (1995), 1-22. | MR | Zbl
and ,[6] Scattering asymptotics for Riemann surfaces. to appear in Ann. of Math. | Zbl
and ,[7] Résonances en limite semi-classique. Mémoires de la S.M.F. 114(3) (1986). | Numdam | Zbl
and ,[8] On the existence of poles of the scattering for several convex bodies. Proc. Japan Acad. 64 (1988), 91-93. | MR | Zbl
.[9] Renewal theorems in symbolic dynamics with applications to geodesic flows, noneuclidean tesselations and their fractal limits. Acta Math. 163 (1989), 1-55. | MR | Zbl
,[10] Meromorphic extension of the resolvent on complete spaces with asymptotically constant negative curvature. J. Func. Anal. 75 (1987), 260-310. | MR | Zbl
and ,[11] Geometric Scattering Theory. Cambridge University Press, 1995. | MR | Zbl
,[12] The limit set of a Fuchsian group. Acta Math. 136 (1976), 241-273. | MR | Zbl
,[13] The Laplacian operator on a Riemann surface I, II, III. Compositio Math. 31 (1975), 83-107, 32 (1976), 71-112, and 33 (1976), 227-259. | EuDML | Numdam | Zbl
,[14] Divisor of the Selberg Zeta function, I. Even dimensions. preprint, 1995.
and ,[15] Chaotic evolution and strange attractors. Lezione Lincee, Cambridge University Press, 1989. | MR | Zbl
,[16] Singularité analytiques microlocales. Astérisque 95 (1982). | Numdam | MR | Zbl
,[17] Geometric bounds on the density of resonances for semi-classical problems. Duke Math. J. 60 (1990), 1-57. | Zbl
,[18] Density of resonances for strictly convex analytic obstacles. Can. J. Math. 48(2) (1996), 437-446. | MR | Zbl
,[19] A trace formula for resonances and application to semi-classical Schrödinger operators, Séminaire EDP, École Polytechnique, Novembre, 1996. | Numdam
,[20] Complex scaling and the distribution of scattering poles. J. of Amer. Math. Soc. 4(4) (1991), 729-769. | MR | Zbl
and ,[21] Lower bounds on the number of scattering poles. Comm. P. D. E. 18 (1993), 847-858. | MR | Zbl
and ,[22] The complex scaling method for scattering by strictly convex obstacles. Ark. Math. 33 (1995), 135-172. | MR | Zbl
and ,[23] The density at infinity of a discrete group of hyperbolic motions. Publ. IHES 50 (1979), 172-202. | EuDML | Numdam | MR | Zbl
,[24] Distribution of scattering poles for scattering on the real line. J. Funct. Anal., 73(2) (1987), 277-296. | MR | Zbl
,[25] Counting scattering poles. in SPECTRAL AND SCATTERING THEORY. M. Ikawa, ed. Marcel Dekker, 1994. | MR | Zbl
,[26] Poisson formulæ for resonances, Séminaire EDP, École Polytechnique, Avril, 1997. | Numdam | MR
,[27] Dimension of the limit set and the density of resonances for convex co-compact hyperbolic surfaces, preprint, 1997. | Zbl
,