On the regularity properties of non-linear wave equations
Journées équations aux dérivées partielles (1997), article no. 10, 8 p.
@article{JEDP_1997____A10_0,
     author = {Klainerman, S. and Machedon, Matei},
     title = {On the regularity properties of non-linear wave equations},
     journal = {Journ\'ees \'equations aux d\'eriv\'ees partielles},
     eid = {10},
     pages = {1--8},
     publisher = {Ecole polytechnique},
     year = {1997},
     language = {en},
     url = {http://www.numdam.org/item/JEDP_1997____A10_0/}
}
TY  - JOUR
AU  - Klainerman, S.
AU  - Machedon, Matei
TI  - On the regularity properties of non-linear wave equations
JO  - Journées équations aux dérivées partielles
PY  - 1997
SP  - 1
EP  - 8
PB  - Ecole polytechnique
UR  - http://www.numdam.org/item/JEDP_1997____A10_0/
LA  - en
ID  - JEDP_1997____A10_0
ER  - 
%0 Journal Article
%A Klainerman, S.
%A Machedon, Matei
%T On the regularity properties of non-linear wave equations
%J Journées équations aux dérivées partielles
%D 1997
%P 1-8
%I Ecole polytechnique
%U http://www.numdam.org/item/JEDP_1997____A10_0/
%G en
%F JEDP_1997____A10_0
Klainerman, S.; Machedon, Matei. On the regularity properties of non-linear wave equations. Journées équations aux dérivées partielles (1997), article  no. 10, 8 p. http://www.numdam.org/item/JEDP_1997____A10_0/

[Be] M. Beals Self-spreading and strength of singularities for solutions to semi-linear wave equations, Annals of Math 118, 1983 no1 187-214. | MR | Zbl

[B] J. Bourgain Fourier transform restriction phenomena for certain lattice subsets and applications to non-linear evolution equations, I, II, Geom. Funct. Analysis 3, (1993), 107-156, 202-262. | MR | Zbl

[G] M. Grillakis, A priori estimates and regularity of non-linear waves, Proceedings of ICM, Zurich, 1994.

[Ke] M. Keel, to appear in Comm. in PDE.

[K-P-V] K. Kenig, G. Ponce, L. Vega The Cauchy problem for the Korteveg-De Vries equation in Sobolev spaces of negative indices, Duke Math Journal 71, no 1, pp 1-21 (1994). | Zbl

[K-M1] S. Klainerman and M. Machedon Space-time estimates for null forms and the local existence theorem, Comm. Pure Appl. Math, vol XLVI, 1221-1268 (1993). | MR | Zbl

[K-M2], S. Klainerman and M. Machedon On the Maxwell-Klein-Gordon equation with finite energy, Duke Math Journal, vol. 74, no. 1 (1994). | MR | Zbl

[K-M3] S. Klainerman and M. Machedon Finite energy solutions of the Yang-Mills equations in R3+1, Annals of Math. 142, 39-119 (1995). | MR | Zbl

[K-M4] S. Klainerman and M. Machedon Smoothing estimates for null forms and applications, Duke Math Journal, 81, no 1, in celebration of John Nash, 99-133 (1996) Also 1994 IMRN announcement. | MR | Zbl

[K-M5] S. Klainerman and M. Machedon with appendices by J. Bourgain and D. Tataru, Remark on the Strichartz inequality, International Math Research Notices no 5, 201-220 (1996). | MR | Zbl

[K-M6] S. Klainerman and M. Machedon Estimates for null forms and the spaces Hs,δ International Math Research Notices no 17, 853-865 (1996). | MR | Zbl

[K-M7] S. Klainerman and M. Machedon On the regularity properties of a model problem related to wave maps, accepted, Duke Math Journal. | Zbl

[K-M8] S. Klainerman and M. Machedon On the optimal local regularity for gauge field theories, accepted, Differential and Integral Equations. | Zbl

[K-S] S. Klainerman, S. Selberg Remark on the optimal regularity for equations of Wave Maps type, to appear in Comm PDE. | Zbl

[K-T] S. Klainerman and D. Tataru, On the local regularity for Yang-Mills equations in R4 + 1, preprint. | Zbl

[L] H. Lindblad Counterexamples to local existence for semi-linear wave equations, Amer. J. Math, 118 (1996) no 1 1-16. | MR | Zbl

[S] J. Shatah Weak Solutions and development of singularities for the SU (2)σ-Model, Comm. Pure Appl. Math, vol XLI 459-469 (1988). | MR | Zbl

[Sch-So] W. Schlag, C Sogge Local smoothing estimates related to the circular maximal theorem. Math Res. Letters 4 (1997) no 1-15. | MR | Zbl

[So] C. Sogge On local existence for non-linear wave equation satisfying variable coefficient null condition, Comm PDE 18 (1993) n0o 11 1795-1821. | MR | Zbl

[T] D. Tataru, The Xsθ spaces and unique continuation for solutions to the semi-linear wave equation, Comm. PDE, 21 (56), 841-887 (1996). | MR | Zbl