@incollection{JEDP_1995____A8_0, author = {Rade, Johan}, title = {Singular {Yang-Mills} connections}, booktitle = {}, series = {Journ\'ees \'equations aux d\'eriv\'ees partielles}, eid = {8}, pages = {1--15}, publisher = {Ecole polytechnique}, year = {1995}, mrnumber = {96k:58049}, zbl = {0896.58017}, language = {en}, url = {http://www.numdam.org/item/JEDP_1995____A8_0/} }
Rade, Johan. Singular Yang-Mills connections. Journées équations aux dérivées partielles (1995), article no. 8, 15 p. http://www.numdam.org/item/JEDP_1995____A8_0/
[DK] The geometry of four-manifolds, Oxford University Pr., Oxford, 1990. | MR | Zbl
and ,[K] Embedded surfaces in 4-manifolds, in : Proceedings of the International Congress of Mathematicians (Kyoto 1990), Springer, Tokyo, Berlin, 1991, pp. 529-539. | MR | Zbl
,[KM1] Gauge theory for embedded surfaces I, II, Topology 32 (1993), 773-826 ; 34 (1995), 37-97. | Zbl
and ,[KM2] Recurrence relations and asymptotics for four-manifolds invariants, Bull. Amer. Math. Soc. 30 (1994), 215-221. | MR | Zbl
and ,[KN] Foundations of Differential Geoemtry, vol. 1, Interscience, New York, 1963. | Zbl
and ,[L] The theory of gauge fields in four dimensions, Amer. Math. Soc., Providence, Rhode Island, 1985. | Zbl
, ,[R1] Singular Yang-Mills fields. Local theory I, J. reine angew. Math. 452 (1994), 111-151. | MR | Zbl
,[R2] Singular Yang-Mills fields. Local theory II., J. reine angew. Math. 456 (1994), 197-219. | MR | Zbl
,[R3] Singular Yang-Mills fields. Global theory, International J. Math. 4 (1994), 491-521. | MR | Zbl
,[SS] Classification of singular Sobolev connections by their holonomy, Commun. Math. Phys. 144 (1992), 337-350. | MR | Zbl
and ,[T] The Seiberg-Witten invariants, videotaped lectures, Amer. Math. Soc., Providence, Rhode Island, 1995. | MR | Zbl
,[U1] Connections with Lp bounds on curvature, Comm. Math. Phys. 83 (1982), 31-42. | MR | Zbl
,[U2] Removable singularities in Yang-Mills fields, Commun. Math. Phys. 83 (1982), 11-30. | MR | Zbl
,[U3] The Chern classes of Sobolev connections, Commun. Math. Phys. 101 (1985), 449-457. | MR | Zbl
,