@article{JEDP_1995____A14_0, author = {Johnsen, Jon}, title = {Regularity properties of semilinear boundary problems in {Besov} and {Triebel-Lizorkin} spaces}, journal = {Journ\'ees \'equations aux d\'eriv\'ees partielles}, eid = {14}, pages = {1--10}, publisher = {Ecole polytechnique}, year = {1995}, zbl = {0948.35502}, mrnumber = {1360483}, language = {en}, url = {http://www.numdam.org/item/JEDP_1995____A14_0/} }
TY - JOUR AU - Johnsen, Jon TI - Regularity properties of semilinear boundary problems in Besov and Triebel-Lizorkin spaces JO - Journées équations aux dérivées partielles PY - 1995 SP - 1 EP - 10 PB - Ecole polytechnique UR - http://www.numdam.org/item/JEDP_1995____A14_0/ LA - en ID - JEDP_1995____A14_0 ER -
Johnsen, Jon. Regularity properties of semilinear boundary problems in Besov and Triebel-Lizorkin spaces. Journées équations aux dérivées partielles (1995), article no. 14, 10 p. http://www.numdam.org/item/JEDP_1995____A14_0/
[1] Boundary problems for pseudo-differential operators. Acta Math., 126 : 11-51, 1971. | MR | Zbl
.[2] On the Spaces Fspq of Triebel-Lizorkin Type : Pointwise Multipliers and Spaces on Domains. Math. Nachr., 125 : 29-68, 1986. | MR | Zbl
.[3] Functional Calculus of Pseudo-Differential Boundary Problems, volume 65 of Progress in Mathematics. Birkhäuser, Boston, 1986. | MR | Zbl
.[4] Pseudo-differential boundary problems in Lp-spaces. Comm. Part. Diff. Equations, 15 : 289-340, 1990. | MR | Zbl
.[5] Parabolic pseudo-differential boundary problems and applications. In L. Cattabriga and L. Rodino, editors, Microlocal analysis and applications, Montecatini Terme, Italy, July 3-11, 1989, volume 1495 of Lecture Notes in Mathematics, Berlin, 1991. Springer. | Zbl
.[6] A global calculus of parameter-dependent pseudodifferential boundary problems in Lp Sobolev spaces. Acta Math., 171 : 165-229, 1993. | MR | Zbl
and .[7] Boundary value problems for the non-stationary Navier-Stokes equations treated by pseudo-differential methods. Math. Scand., 69 : 217-290, 1991. | MR | Zbl
and .[8] Elliptic boundary problems and the Boutet de Monvel calculus in Besov and Triebel-Lizorkin spaces. (to appear in Math. Scand.). | Zbl
.[9] Pointwise multiplication of Besov and Triebel-Lizorkin spaces. (to appear in Math. Nachr.). | Zbl
.[10] Regularity properties of semi-linear boundary problems in Lp-related spaces. (in preparation).
.[11] The stationary Navier-Stokes equations in Lp-related spaces. PhD thesis, University of Copenhagen, Denmark, 1993. Ph.D.-series 1.
.[12] The Sharp Apriori Estimates for Some Superlinear Degenerate Elliptic Problems. In Schmeisser, H.-J. and Triebel, H., editor, Function Spaces, Differential Operators and Nonlinear Problems, volume 133 of Teubner-Texte zur Mathematik, pages 200-217, Leipzig, 1993. Teubner Verlagsgesellschaft. | MR | Zbl
.[13] Navier-Stokes Equations, Theory and Numerical Analysis. Elsevier Science Publishers B.V., Amsterdam, 1984. (Third edition). | Zbl
.[14] Theory of function spaces, volume 78 of Monographs in mathematics. Birkhäuser Verlag, Basel, 1983. | MR | Zbl
.[15] Theory of function spaces II, volume 84 of Monographs in mathematics. Birkhäuser Verlag, Basel, 1992. | MR | Zbl
.[16] A quasi-homogeneous version of paradifferential operators, I. Boundedness on spaces of Besov type. J. Fac. Sci. Univ. Tokyo Sect. IA, Math., 33 : 131-174, 1986. | MR | Zbl
.