Diffraction pour l'équation de la chaleur
Journées équations aux dérivées partielles (1993), article no. 2, 9 p.
@incollection{JEDP_1993____A2_0,
     author = {Harg\'e, Thierry},
     title = {Diffraction pour l'\'equation de la chaleur},
     booktitle = {},
     series = {Journ\'ees \'equations aux d\'eriv\'ees partielles},
     eid = {2},
     pages = {1--9},
     publisher = {Ecole polytechnique},
     year = {1993},
     mrnumber = {95a:35052},
     zbl = {0844.35038},
     language = {fr},
     url = {http://www.numdam.org/item/JEDP_1993____A2_0/}
}
TY  - JOUR
AU  - Hargé, Thierry
TI  - Diffraction pour l'équation de la chaleur
JO  - Journées équations aux dérivées partielles
PY  - 1993
SP  - 1
EP  - 9
PB  - Ecole polytechnique
UR  - http://www.numdam.org/item/JEDP_1993____A2_0/
LA  - fr
ID  - JEDP_1993____A2_0
ER  - 
%0 Journal Article
%A Hargé, Thierry
%T Diffraction pour l'équation de la chaleur
%J Journées équations aux dérivées partielles
%D 1993
%P 1-9
%I Ecole polytechnique
%U http://www.numdam.org/item/JEDP_1993____A2_0/
%G fr
%F JEDP_1993____A2_0
Hargé, Thierry. Diffraction pour l'équation de la chaleur. Journées équations aux dérivées partielles (1993), article  no. 2, 9 p. http://www.numdam.org/item/JEDP_1993____A2_0/

[Ag] S. Agmon : Lectures on exponential decay of solutions of second order elliptic equations, Mathematical Notes 29, Princeton University Press. | Zbl

[Bu] V.S. Buslaev : Continuum integrals and the asymptotic behavior of the solutions of parabolic equations as t → 0, Applications to Diffraction, 67-86 Topics in Mathematical Physics, Vol 2, Plenum, New-York, 1968.

[Ha] T. Hargé : Thèse Orsay.

[Ha] T. Hargé : Diffraction pour l'équation de la chaleur, A paraître au Duke Math. Journal. | Zbl

[Hs] P. Hsu : Short time asymptotics of the heat kernel on concave boundary, Siam J. Math. Anal 20 (1989), 1109-1127. | MR | Zbl

[IK] Ikeda et Kusuoka : Short time asymptotics for fundamental solutions of diffusion equations, Springer Lecture Notes in Mathematics 1322 (1988), 37-49. | MR | Zbl

[Le] G. Lebeau : Régularité Gevrey 3 pour la diffraction, Communication in Partial Differential Equations, 9 (15), 1437-1494 (1984). | MR | Zbl

[Mi] Milnor : Morse Theory, 67-76.

[NS] J.R. Norris et D.W. Stroock : Estimate on the fundamental solution to heat flows with uniformly elliptic coefficients, Proc. Lond. Math. Soc. 62 (1991), 375-402. | MR | Zbl

[VdB] M. Van Den Berg : A Gaussian lower bound for the Dirichlet heat kernel, Bull. Lond. Math. Soc. 24 (1992), 475-477. | MR | Zbl