@article{JEDP_1992____A6_0, author = {Vodev, Georgi}, title = {Sharp bounds for the number of the scattering poles}, journal = {Journ\'ees \'equations aux d\'eriv\'ees partielles}, eid = {6}, pages = {1--5}, publisher = {Ecole polytechnique}, year = {1992}, zbl = {0771.35039}, language = {en}, url = {http://www.numdam.org/item/JEDP_1992____A6_0/} }
Vodev, Georgi. Sharp bounds for the number of the scattering poles. Journées équations aux dérivées partielles (1992), article no. 6, 5 p. http://www.numdam.org/item/JEDP_1992____A6_0/
[1] A polynomial bound on the number of scattering poles for a potential in even dimensional space in Rn, Commun. P.D.E. 11 (1986), 367-386. | MR | Zbl
,[2] Scattering Theory, New York, Academic Press, 1967. | Zbl
and ,[3] Polynomial bounds on the number of scattering poles, J. Funct. Anal. 53 (1983), 287-303. | MR | Zbl
,[4] Polynomial bounds on the distribution of the poles in scattering by obstacle, Journées «Equations aux Dérivées Partielles», Saint-Jean-de-Montes, 1984. | Numdam | Zbl
,[5] Complex scaling and distribution of the scattering poles, J. Amer. Math. Soc. 4 (1991), 729-769. | MR | Zbl
and ,[6] Distribution of scattering poles near real axis, Commun. P.D.E., to appear. | Zbl
and ,[7] Lower bounds on the number of scattering poles, preprint, 1992.
and ,[8] The Theory of Functions, Oxford University Press, 1968.
,[9] Sharp polynomial bounds on the number of scattering poles for metric perturbations of the Laplacian in Rn, Math. Ann. 291 (1991), 39-49. | MR | Zbl
,[10] Sharp bounds on the number of scattering poles for perturbations of the Laplacian, Commun. Math. Phys. 146 (1992), 205-216. | MR | Zbl
,[11] On the distribution of scattering poles for perturbations of the Laplacian, Ann. Inst. Fourier (Grenoble) 42 (1992), to appear. | Numdam | MR | Zbl
,[12] Sharp polynomial bounds on the number of scattering poles of radial potentials, J. Funct. Anal. 82 (1989), 370-403. | MR | Zbl
,[13] Sharp polynomial bounds on the number of scattering poles, Duke Math. J. 59 (1989), 311-323. | MR | Zbl
,