JOURNÉES ÉQUATIONS AUX DÉRIVÉES PARTIELLES

GIOVANNI M. TROIANIELLO

A class of weighted function spaces, and intermediate Caccioppoli-Schauder estimates

Journées Équations aux dérivées partielles (1988), p. 1-7

http://www.numdam.org/item?id=JEDP_1988____A9_0

© Journées Équations aux dérivées partielles, 1988, tous droits réservés.

L'accès aux archives de la revue « Journées Équations aux dérivées partielles » (http://www.math.sciences.univ-nantes.fr/edpa/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

A CLASS OF WEIGHTED FUNCTION SPACES, AND INTERMEDIATE CACCIOPPOLI-SCHAUDER ESTIMATES

Giovanni M. TROIANIELLO Dipartimento di Matematica Università di Roma 1

1-A THEOREM OF D. GILBARG AND L. HORMANDER

Consider the Dirichlet problem

(1)
$$L u = f \text{ in } \Omega, u \mid_{\partial \Omega} = \varphi,$$

where Ω is a bounded open subset of \mathbb{R}^N , $\partial \Omega$ its boundary, and L a linear second order uniformly elliptic differential operator with coefficients defined on $\overline{\Omega}$. The classical Caccioppoli-Schauder approach to (1) provides, under suitable regularity assumptions about $\partial \Omega$ and the coefficients of L, a priori bounds on norms

$$|u|_{C^{k},\delta_{(\Omega)}}$$
, $k=2$, 3, ... and $\delta \in]O,1[$;

this of course requires, to start with, the membership of f in $C^{k-2,\delta}(\overline{\Omega})$ and of φ in $C^{k,\delta}(\partial \Omega)$.

What happens now if we weaken our assumption about φ by requiring that it belong to $C^{k',\delta'}(\partial\Omega)$ for some $k'=0,1,\ldots$ and some $\delta'\in]0,1[$ such that $k'+\delta'< k+\delta?$ An answer to this question was given by Gilbarg and Hörmander [4]: they provided weighted $C^{k,\delta}$ norm estimates for solutions of (1), the weight consisting of the α -th power of the distance from $\partial\Omega$ with $\alpha\equiv k+\delta-(k'+\delta')$. Note that, for what correspondingly concerns f, the natural regularity requirement is now only that its weighted $C^{k-2,\delta}$ norm be finite.

In order to illustrate the key point of [4] we introduce some notations. Letting

$$\begin{split} B_r(x^o) &\equiv \{x \in \mathbb{R}^N \ \middle| \ \middle| x - x^o \middle| < r \} \\ B_r^+(x^o) &\equiv \{x \in B_r(x^o) \ \middle| \ x_N > x_N^o \} \\ S_r^+(x^o) &\equiv \{x \in \partial B_r(x^o) \ \middle| \ x_N > x_N^o \} \\ S_r^o(x^o) &\equiv \partial B_r^+(x^o) \setminus \overline{S_r^+(x^o)}. \end{split}$$

(under the convention that the dependence on x^o , r be depressed if $x^o=0$, r=1), we define $C^{k,\delta}_{\alpha}(B^+_R)$ as the space of functions u=u(x), $x\in B^+_R$, having finite norms

$$\left|u\right|_{C^{k,\delta}_{\alpha}(\mathcal{B}^{+}_{R})} \equiv \sup_{S>O} S^{\alpha} \left|u\right|_{C^{k,\delta}(\mathcal{B}^{+}_{R[S]})}$$

here, $k=0\,,1\,,\ldots,\ O<\delta\leq 1\,,\ \alpha\geq O\,,$ and $B^+_{R\,[S\,]}\equiv\{x\in B^+_R\mid x_N>S\,\}.$ (When $\alpha< O$ the right-hand side in the above definition of norm is finite only for u=O). Through direct investigation of Green's function for the Laplace operator in the upper half space Gilbarg and Hörmander proved the following result (Theorem 3.1 of their paper): let $k=2\,,3\,,\ldots,\ O<\delta<1\,,\ O\leq\alpha< k+\delta$ and $k+\delta-\alpha\not\in\mathbb{N}$; then there exists a constant C such that

$$(2)_{k} \qquad |u|_{C_{\alpha}^{k}, \delta_{(B^{+})}} \leq C |f|_{C_{\alpha}^{k-2, \delta_{(B^{+})}}}$$

whenever u is a function from C_{α}^{k} , $\delta(B^{+})$ which vanishes near S^{+} and satisfies (in the pointwise sense)

(3)
$$u \mid_{S^0} = O , \Delta u = f \text{ in } B^+.$$

What we are going to describe in the present article is an alternative approach to (3), which yields a slightly more general result than the bounds $(2)_k$. Notice that the passage from Δ to more general variable coefficient operators L can be achieved through a perturbation argument as in [4, prop. 4.3]; the case of nonvanishing Dirichlet data φ on S^0 can be handled through suitable extensions of the φ 's to the upper half space [4, lemma 2.3]; finally, partitions of unity and changes of variables near boundary points lead to the general setting of (1) [4, theorem 5.1]. This procedure exhibits rather delicate technical features, if one wants to adopt the "natural" generality for what concerns regularity assumptions about the coefficients of L as well as $\partial \Omega$. The crux of the matter lies, however, within the study of (3).

2-THE MAIN RESULTS OF THIS ARTICLE

We are going to deal with weak solutions to a problem such as

(4)
$$u \mid_{S^o} = O , \Delta u = f + f_{\pi}^i \text{ in } B^+$$

i.e., for some $p \in]1, \infty[$,

$$u \in H^{1,p}(B^+), u|_{S^0} = 0,$$

(5)
$$\int_{B^{+}} u_{x_{i}} \varphi_{x_{i}} dx = \int_{B^{+}} (-f \varphi + f^{i} \varphi_{x_{i}}) dx \forall \varphi \in C_{o}^{\infty}(B^{+})$$

(summation convention of repeated indices). Here and throughout, $H^{k,p}$ and $H^{k,p}_o$ are the standard notations for Sobolev spaces.

For our study of regularity we find it convenient to introduce new (norms and) function spaces. Namely, for $1 \le p < \infty$, $\alpha \in \mathbb{R}$ and $0 \le \lambda \le N + p$ let

$$[u]_{L^{p,\lambda}_{\alpha}(\mathcal{B}^{+}_{R})} \equiv \sup_{x^{o} \in \mathcal{B}^{+}_{R}, \rho > o} \rho^{-\lambda} \inf_{c \in \mathbb{R}} \int_{\mathcal{B}^{+}_{R} \cap \mathcal{B}_{\rho}(x^{o})} x^{p\alpha}_{N} \left| u - c \right|^{p} dx$$

and denote by $L_{\alpha}^{p,\lambda}\left(B_{R}^{+}\right)$ the space of functions $u=u\left(x\right)$, $x\in B_{R}^{+}$, having finite norms

$$\left|u\right|_{L^p_\alpha,^\lambda(\mathcal{B}^+_R)} \ \equiv \ (\int_{\mathcal{B}^+_R} x_N^{p\alpha} \ \left|u\right|^p \ dx \ + \ \left[u\right]_{L^p_\alpha,^\lambda(\mathcal{B}^+_R)}^p)^{1/p} \, .$$

It is clear that, for any value of α , L^p_{α} , (B^+_R) at least contains $C^{\infty}_o(B^+_R)$.

 $L_o^{p,\lambda}(B_R^+)$ is the by now classical campanato space, and $L_o^{p,\lambda}(B_R^+) \sim C^{o,(\lambda-N)/p}(\overline{B_R^+})$ if $N < \lambda \leq N+p$ [2]. But we have more :

Lemma 1

For $\alpha \ge O$ and $N < \lambda \le N + p$ the spaces $L^{p,\lambda}_{\alpha}(B^+_R)$ and $C^{o,(\lambda-N)/p}_{\alpha}(B^+_R)$ are isomorphic.

 $L_o^{p,N}(B_R^+)$ is a $B\ M\ O$ (\equiv Bounded Mean Oscillation) space [6]. The importance of $B\ M\ O$ spaces as "good substitutes" for C^o and L^∞ has since long been acknowledged in PDE's (and Harmonic Analysis ...). Take for instance our initial considerations about the classical Caccioppoli-Schauder approach to (1):

 $B\ M\ O$ spaces are known to fill the gaps left over by the exclusion of the two values $\delta=O$ and $\delta=1$ [3]. But weighted norms lead to another example. Precisely, consider the continuous imbedding

(6)
$$C_{\alpha+\beta}^{o,\delta+\beta}(B_R^+) \subset C_{\alpha}^{o,\delta}(B_R^+)$$

which is proven in [4] for $\alpha \geq O$, $0 \leq \delta < 1$ and $\beta > O$ with $\delta + \beta \leq 1$, under the restriction $\alpha \neq \delta$. This restriction has far-reaching consequences, such as the above-mentioned requirement $k + \delta - \alpha \notin \mathbb{N}$ for the validity of $(2)_k$. But, why cannot $\alpha = \delta$ be allowed? For sure, (6) is false when $\alpha = \delta = O$, as the one-dimensional example given in [4], that is, $u(x) \equiv \log x$, 0 < x < 1, clearly shows. But, as it happens, this function u belongs to $L_o^{p,N}(]O,1[)$... We can indeed prove the following result, which contains (6) in all cases except $\alpha \neq O = \delta$.

Lemma 2

For $\alpha \geq O$, $O \leq \delta < 1$ and $\beta > O$ with $\delta + \beta \leq 1$, the continuous imbedding

$$L^{p,N+p(\delta+\beta)}_{\alpha+\beta}(B^+_R) \subset L^{p,N+p\delta}_{\alpha}(B^+_R)$$

is valid.

We can now arrive at our results about solutions to (5). Adopting the symbol $L^\infty_\beta(B^+)$ to denote the space of measurable functions h=h(x), $x\in B^+$, such that

$$\left|h\right|_{L^\infty_\beta(B^+)} \equiv \left|x^\beta_N h\right|_{L^\infty(B^+)}$$

is finite, we begin with first derivatives.

Theorem 1

Let $0 \le \delta < 1$, $0 \le \alpha < 1 + \delta$. If, for a suitable value of p > 1, u satisfies (5) with $f \in L^{\infty}_{1+\alpha-\delta}(B^+)$ and f^1 , ..., $f^N \in C^{o}_{\alpha}$, $\delta(B^+)$, then all its first derivatives belong to $L^{p,N+p}_{\alpha}\delta(B^+_R)$, 0 < R < 1, and satisfy

$$\begin{split} \sum_{i=1}^{N} \left| u_{x_{i}} \right|_{L_{\alpha}^{p}, N+p \, \delta_{(B_{R}^{+})}} & \leq C(\left| f \right|_{L_{1+\alpha-\delta}^{\infty}(B^{+})} \\ & + \sum_{i=1}^{N} \left| f^{i} \right|_{C_{\alpha}^{o, \delta_{(B^{+})}}} + \left| u \right|_{H^{1,p}(B^{+})}) \end{split}$$

with C independent of u, f, f^1 , ..., f^N .

The passage to second derivatives is performed, so to speak, through "differentiation" of (5) with respect to x_1, \ldots, x_{N-1} . Without loss of generality, it can be assumed that $f^1 = \ldots = f^N = O$; as for f, the "natural" requirement becomes

$$f \in C^{o,\delta}_{\alpha}(B^+)$$

for $0 \le \alpha < 2 + \delta$. It is the range $1 + \delta \le \alpha < 2 + \delta$, of course, that poses new difficulties: no longer is then f in some $L^p(B^+)$, so that the $H^{2,p}$ regularity theory does apply to (5), and the above results about u are not inherited by u_{x_S} , $S = 1, \ldots, N-1$. But $H^{2,p}$ regularity does apply to $x_N u$, and $U = x_N u_{x_S}$ satisfies, in the weak sense,

$$U\big|_{S_{R_1}^o} = O$$
, $\Delta U = -x_N f_{x_S} + 2 u_{x_S x_N}$ in $B_{R_1}^+$

for any $R_1 \in \]\ O$, 1 [. We can thus arrive at.

Theorem 2

Let $O \leq \delta < 1$, $O \leq \alpha < 2 + \delta$. If, for a suitable value of p > 1, u satisfies (5) with $f \in C^{o, \delta}_{\alpha}(B^{+})$ and $f^{1} = \ldots = f^{N} = O$, then all its second derivatives belong to $L^{p, N+p \delta}_{\alpha}(B^{+}_{R})$ when restricted to B^{+}_{R} , O < R < 1, and satisfy

(7)
$$\sum_{i,j=1}^{N} |u_{x_{i}x_{j}}|_{L_{\alpha}^{p}, N+p\delta_{(\mathcal{B}_{R}^{+})}} \leq C(|f|_{C_{\alpha}^{o},\delta_{(\mathcal{B}^{+})}} + |u|_{H^{1,p}(\mathcal{B}^{+})})$$

with C independent of u, f.

(If we want to be more specific in the choice of p, we take p=2 for $0 \le \alpha < \frac{1}{2} + \delta$ and $1 for <math>\frac{1}{2} + \delta \le \alpha < 1 + \delta$ in both Theorems 1 and 2, p=2 for $1+\delta \le \alpha < \frac{3}{2} + \delta$ and $1 for <math>\frac{3}{2} + \delta \le \alpha < 2 + \delta$ in Theorem 2).

When supp $u \cap S^+ = \emptyset$, (7) holds for R = 1 without the term $\left|u\right|_{H^{1,p}(B^+)}$ on its right hand side. This means that (2)₂ holds for all values of α in the range $[O,2+\delta[,O<\delta<1]$, that is, without exception for $\alpha=\delta$ and $\alpha=1+\delta$. Since the procedure leading to Theorem 2 can be repeated for all higher order derivatives, (2)_k holds whenever $k=2,3,\ldots$ and $O\leq\alpha< k+\delta$, $O<\delta<1$, no exception being made for $k+\delta-\alpha\in\mathbb{N}$.

As for $\delta = O$, we simply mention that C^o_{α} , o (B^+) could safely be

replaced by $L^{\infty}_{\alpha}(B^+)$ throughout. The above results can therefore be said to contain "weighted versions of the $L^{\infty} \to B M O$ type of regularity".

A few words about our techniques. The main tools are estimates such as

(8)
$$\int_{B_{\rho}(x^{0})} |\nabla w|^{p} dx \leq C(p) \left[\left(\frac{\rho}{r} \right)^{N} \int_{B_{r}(x^{0})} |\nabla w|^{p} dx + \sum_{i=1}^{N} \int_{B_{r}(x^{0})} |h^{i}|^{p} dx \right]$$

and

(9)
$$\int_{B_{\rho}(x^{0})} \left| \nabla w - (\nabla w)_{\rho;\alpha} \right|^{p} dx \leq C(p,\alpha) \left[\left(\frac{\rho}{r} \right)^{N+p} \int_{B_{r}(x^{0})} \left| \nabla w - (\nabla w)_{r,\alpha} \right|^{p} dx \right] + \sum_{i=1}^{N} \int_{B_{r}(x^{0})} \left| h^{i} - (h^{i})_{r,\alpha} \right|^{p} dx \right]_{j}$$

which hold whenever w satisfies

$$w \in H^{1,p}(B_r(x^o)),$$

$$\int_{B_{r}(x^{0})} w_{x_{i}} \varphi_{x_{i}} dx = \int_{B_{r}(x^{0})} h^{i} \varphi_{x_{i}} dx \quad \forall \varphi \in C_{o}^{\infty}(B_{r}(x^{0}))$$

where $O < \rho \le r < \infty$, $x^o \in \mathbb{R}^N$; in (9), the symbol (.) $_{\rho;\alpha}$ denotes average over $B_{\rho}(x^o)$ with respect to $x_N^{\alpha} dx$, $\alpha \ge O$. We need p from [1,2]. For p=2, (8) and (9) are obtained [3] through typical techniques of the Hilbert space theory of elliptic PDE's. The passage to $1 requires some preliminary results from the corresponding <math>H^{k,p}$ theory which can be found, for instance, in [7].

If spheres $B_{\rho}(x^0)$ are replaced throughout by hemispheres $B_{\rho}^+(x^0)$ - and w is required to vanish on $S_r^0(x^0)$ - the counterpart of (8) is obviously valid for 1 , while the counterpart of (9) is only needed here for <math>p = 2 as in [3].

Detailed proofs will appear in a forthcoming article.

The results mentioned here could be compared with those of [1], [5], where the perturbing role of the boundary appears through degeneration of operators rather than explosion of some norms of free terms (and boundary data).

BIBLIOGRAPHY

[1]: P. BOLLEY - J. CAMUS - G. METIVIER

Estimations de Schauder et régularité Höldérienne pour une classe de problèmes aux limites singuliers.

Comm. in P D E 11, 1135 - 1203 (1985).

[2] : S. CAMPANATO

Proprietà di Hölderianità di alcune classi di funzioni. Ann. Sc. Norm. Sup. Pisa 17, 173 - 188 (1963).

[3]: S. CAMPANATO

Equazioni ellittiche del secondo ordine e spazi L^{2} , λ . Ann. Mat. Pura Appl. 69, 321 - 382 (1965).

[4]: D. GILBARG - L. HORMANDER

Intermediate Schauder estimates. Arch. Rat. Mech. An. 74, 297-318 (1980).

[5]: C. GOULAOUIC - N. SHIMAKURA

Régularité Höldérienne de certains problèmes aux limites elliptiques dégénérés.

Ann. Sc. Norm. Sup. Pisa, 10 (1983).

[6]: F. JOHN - L. NIRENBERG

On functions of bounded mean oscillation. Comm. Pure Appl. Math. 14, 415-426 (1961).

[7]: G. M. TROIANIELLO

Elliptic differential equations and obstacle problems. Plenum Publ. Co., New-York, (1987).