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Semiclassical resonances in some simple cases,

Johannes Sjostrand ,
Dept. of Mathematics , University of Lund ,
Box 118 , S-221 00 Lund , SWEDEN.

0 . Introduction.
In this talk we report on some further developpements of

the work on resonances in the semiclassical limit , started with
B. Helffer in [?] . ( See also [8] for a survey.) We start by
recalling briefly the theory developped in [7) , which is
essentially a microlocal version of the method of complex
scaling initiated by Aguilar-Combes ^ij and Balslev-Combes^2j .
Let P = - h A + V ( x ) , where V is analytic and real-valued ,

2and let p ( x , C ) = S + V ( x ) be the corresponding ( principal )
symbol. ( All our results are actually valid for a more general
class of operators.) In order to define resonances ( i . e . certain
complex eigenvalues ) near 0 , we make the following assump-
tions :
( 0 . 1 ) There exist smooth functions r , R fc C (R ) such that

r ̂  1 , rR _> 1 , 9^ = 0(r R~ I a I ) , 9^ = C^R 1""^ )
uniformly on (R for all a € M

( 0 . 2 ) There exists C > 0 such that V extends holomor-
phically to { x 6 C11 ; I Im x | _< C " " 1 R(Re x ) ] , and

2satisfies V ( x ) < C r(Re x )
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(0 .3) There exists a real-valued (escape-)function G €

C^R211) with a^G = 0-^1-^-H) for | a | + B | > 1 ,x c, • • ' —
2 -1such that H G >^ r /C in p ( 0 ) \ K , where K is some

^^
compact set and C > 0 is some constant . Here r ( x , ^ ) =

( r t x ) 2 ^ 2 ) ^ .

After a suitable modification of G in the region where

|£ ; |» r (x) , we can define certain weighted Sobolev spaces

H ( A ^ , m ) , when t>0 and h>0 are small enough . (See [7] for
0 yt

details.) Here A^ C C is given by Im(x,^) = t H (Re(x,0) ,

and very roughly , we have u € H ( A . ^ , 1 ) iff ^ 6 L2 (e^^^dxdE;) ,

^where u = u ( x , ^ ) is a suitable FBI-transform of u . In [?3 /

we obtained the following basic result :

Theorem 0.1 . For t>0 sufficiently small , there exists h/.>0

and a neighborhood ^ C £ of 0 such that for 0<h<h/. :

For all z € Q, the operator (P-z) : H ( A , ^ ^ 2 ) -> H ( A . ^ , 1 )
"c^ tG

is Fredholm of index 0 . Moreover , there is a discrete set

r (h )cA such that P-z is bijective for z € ^V (h) , and

splits in a natural way into a direct sum of one bijective

operator and one nilpotent operator : F -> F , when z € F ( h ) .z z
Here F^ C H(A^,^2) C ^A.^D is a non-trivial finite-

dimensional space .

The elements of F ( h ) are called resonances, and if

z 6 r ( h ) , then dim F is the corresponding (algebraic)z

multiplicity. In [?] we showed that a different choice of

t>0 or of G gives rise to the same resonances and the same

spaces F in some sufficiently small neighborhood of 0 .z

We also showed that the resonances belong to the closed lower

half plane.
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In order to formulate the general problems and the rather

special results that we have obtained so far , we first recall

a simple geometric discussion from Gerard-Sjostrand [6]

(related to the geometric scattering theory , see Reed-Simon [ 1 1 ] )

Let EQ>O be so small , that the conclusions of (0 .3)

remain valid also on p ~ 1 ( e ) for e f [-e . e ] . For p ^

P {l~£o'€Q^} ' put (s>t{p) = exp I^P) for fc in the maximal

interval of definition ]-r_ (p) ,T^ (p) [ , T^(p) 6 ]o,j;°°1 .

We then define the outgoing (+) and incoming (-) tails by

r+ = {p € P~1 ( [ - E Q ^ E Q ] ) ; <^(p) +> <» , t -> T _ ( p ) ] .
~ +

We then have the following properties :

1° F^ are closed , F^ f\ {G^T} and F_ F\ {G^-T} are compact

for all T € (R .

2° For some TQ>O , we have r^ C. {G^-T } , r_ C {G_<T } .

3° K = r^ H r_ is compact.

4° If r_ f 0 (or if r^ i 0 ) then K ^ 0 .

5° If we define the true tails 3^ = r^\K , then the symplectic

volume of 7 is equal to 0.

6 The following statements are equivalent :

(D y^ j t 0 , (ID y_ / 0 ,
(iii) The set {p 6 p~1 ( [-e^ ,0^ )\K ; dist(p,K) ^ a }

is non empty for every a > 0 .

We also introduce F^ = 1^ Q p ~ 1 ( 0 ) , K° = K f\ p ~ 1 ( 0 ) . The

properties 1 ,..,4° are true also with K , r replaced by

K , F^ . 4 , 5 also remain valid under the additional

assumption that dp -f- 0 everywhere on p~1 (0) . (We then replace

the symplectic volume by the corresponding Liouville measure.)

We have the following unwritten theorem of [?3 :
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Theorem 0 , 2 . If K = 0 , then there are no resonances in some
fixed h-independent neighborhood of 0 .

The interesting problem is then to find out what happens
when K + 0 . In [7] , (see also [4] , ) we analyzed the case
of a potential well in an island . In that case the resonances
are generated by tunneling through a potential barrier and they
are exponentially close to the real eigenvalues of a certain
self adjoint eigenvalue problem . Moreover , we have T = F = K ,
so the true tails are empty.

We shall here describe two other simple cases , when it is
possible two give a rather complete description of the resonances
in certain regions. In both cases , it is rather easy to make
some simple WKB-constuctions in order to guess the asymptotics
of the resonances . The difficulty is rather to prove that
these approximate WKB-resonances are close to actual resonances ,
and that there are no others . There is no place to discuss the
methods of the proofs here and we refer to [6^ and [l 2] for
further details.

1 . The case of a closed trajectory of hyperbolic type

This is joint work with C. Ggrard analogous to Gerard's

extension ['5J of Ikawa's results [9] , [l o] in the case of

obstacles . We assume

( 1 . 1 ) p = 0 z3> dp / 0 .

( 1 . 2 ) K is the image of a simple closed trajectory

[0,T°] 5 t (-> exp(tH ) ( p ° ) = y ° ( t ) .
P
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Let H C p ( 0 ) be a hypersurface which intersects Y
transversally at p . We then have the Poincarg map H —> H
obtained by following the flow of H once along Y • PP
is then a fixed point and we let p be the differential at p .
We assume,

( 1 . 3 ) y is of hyperbolic type .

This means that p has no eigenvalues of modulus 1 . By the
implicit function theorem , the whole situation is stable if
we replace p ( 0 ) by p ( c ) for c 6 ["^o^O^ ' if e0>o

is small enough . Let then Y 6 s [ O y T 6 ] —> p ( e ) , p^ ,
p be corresponding quantities. Let Q . ( c ) , . . , 9 ^ ( c ) i

1/Q-. ( c) , . . , 1 /© . ( c ) be the eigenvalues of p8 with | 9 . ( c) | > 1
We can show the following geometrical facts:

F are involutive analytic manifolds intersecting trans-
versely along Y = \J Y

Let L^ be the sum of the eigenspaces of p^ corresponding

to the eigenvalues e. , and let y (L^) be the space of

complex polynomials of degree <_ N-1 on this space . Then

p c induces a map D^ : ̂ > --> CP , which has the eigen-
+ 01 " î ^a -1

values 9" = e^ • - 9 ^ , |a j<N-1 .

If we introduce the action :

C ( c ) = J ^ dx ,
Y

then C 1 ( c ) = T ( c ) .

In [6J we also define a certain analytic function p ( £ )

satisfying p ( c ) = IQ-) ( c) • •Q^,-, ( c) I""2 .
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Theorem 1 . 1 . Let EQ > 0 be sufficiently small . Let C >0 .
Choose N so large that the following set does not increase if
we further increase N :

r ° ( h ) = { E € I-Co, £ o ] - i [ 0 , C Q h l ; del(I-e^ ( E ) / h?(E)D^)=0 ] .

Then if we count the elements of each set with their natural
multiplicities , there is for h>0 sufficiently small an injec-
tive map b ( h ) : F ( h ) -> {resonances of P} , such that
b ( h ) ( p ) - p = o ( h ) uniformly in h and p . The image of b ( h )
contains all resonances in a slightly smaller rectangle ,
[ - C Q45h,CQ-Sh]-i[o, (CQ-S ) h ] .

Notice that if E belongs to the rectangle in the defini-
tion of F ( h ) , then E belongs to r° ( h ) iff there are
k € Z and a € I^"1 such that

C ( E ) = 27Tkh+ih log p ( E ) - ih E a . log e . (E )

There is actually a more refined result:

Theorem 1 ,2 . Let Cp , C , N be as in Theorem 1.1. Then we

have a classical symbol , holomorphic for ( z , E ) in a suitable

h-independent domain :

00

F _ ^ ( E , z , h ) ~ Z A . ( E , z ) h^2 ,
0 3

with A p ( E , z ) = I - z ~ ^ p { E ) D^ , such that if r°°(h) =

{ E ^ [-£Q,£Q]-i[o,CQh]; det F_^ (E^e"^ ( E ) ̂ h) = 0 } , then

there is an injective map b ( h ) : r°°(h) —> {resonances of P} ,

such that b ( h ) ( p ) - p = 0(h°°) . Again the image of b ( h ) contains

all resonances in a slightly smaller rectangle.
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2 . The case of a non-degenerate critical point.

Here we describe the results of [12] . Not only the
results , but also the proofs are close to those of [6J , and
the proofs are even a little simpler . In the special case of
a potential maximum , intersecting results have recently and
independently been obtained by Briet-Combes-Duclos [3] .

We assume that K is reduced to a point :

( 2 . 1 ) K° = { ( X Q , S Q ) } .

Since the Hamilton field of p has to vanish at that point,
we have ^ = 0 , and after a translation , we may also assume
that XQ = 0 . Then we also have that V V ( 0 ) = 0 , so 0
is a critical point with critical value 0 . We shall also
assume that this point is non-degenerate ,

( 2 . 2 ) det V ' t O ) ^ 0 .

(For operators more general than the Schrodinger operators an
additional assumption is necessary , but we shall not discuss
this here.)

After a linear change of the x-coordinates , we may assume
that

( 2 . 3 ) 2 p ( x , 0 = Z X , ( ^ + x 2 ) + Z X.(^-x 2) + 0( ( x , 0 ! 3 ) ,
1 J J : n-d+1 D 3 3

near ( 0 , 0 ) , and the eigenvalues of the linearization of HP
at ( 0 , 0 ) are then j; z , , j = 1 , . . , n , where z . = i X . ,
j = 1 , . . , n - d , and z, = \ = P-—.^ r J = n - d + 1 , . . , n .J D def. 3 n Q

The H -flow then has a stable outgoing manifold ; L ,}~ +
of dimension d , which passes through ( 0 , 0 ) and such that
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T (o 0) ^ L + ^ = t^e sum °^ ^^enspaces corresponding to

V ^ • • i V^ . It is easy to show that L = r . Similarly

r_ is the stable incoming manifold corresponding to

- p^ , . . , - p- .

After a linear symplectic change in the last group of variables,

we may write ,

( 2 . 4 ) p ( x , ^ ) = p ' t x ' ^ ' ) + h A x " - ^ " + 0 ( ( x , U 3 ) ,

where x' = (x^ , . . , x^^) , x"= (^-d+i ' • • 'x ) ' and where

p' is a positive definite quadratic form , while A is a

matrix with spectrum = { l ^ , . . , u . } . Then T , n^110) is

spanned by the directions 9 „ . Choose scalar products!\.
< x n , y " > , [S" ,n"] so that <Ax" ,x"> > 0 , ^A^",^"] > 0 for

x" , ^" ^ 0 . We can then consider a local escape function :

G ( x , S ) = <x" ,x "> - [S"^"J .

It turns out that H G ^ (x,0 I 2 on p~1 ( 0 ) , and that on

A^ intersected with a sufficiently small neighborhood of the

origin , the function p . takes its values in a sector
-tG

arg z ^ IQ^'~"^^^\ , where 6 . > 0 , and for every fixed

(sufficiently small) t , we may take 9. as small as we like.

Furthermore , p , ~ | ( x , ^ ) 2 .
tG

We are here in a situation completely analogous to the

well-known case of degenerate elliptic operators with double

characteristics , if we think of A., , as our new R211 .tG

Let A^ be the complex stable outgoing ( Lagrangian) manifold

of dimension n associated to the flow of e^19?! , for
P

9>0 small . Then T , Q ^ ( A ^ ) is the sum of the eigenspaces

associated to the eigenvalues z . . We then know from [13]
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that A . is strictly positive with respect to A . , ,• "CG
It turns out that the resonances close to 0 correspond
to WKB-functions associated to A , and as in section 1 ,
we first state a simplified version of the result :

Theorem 2 , 1 , Choose C^>0 such that none of the values

( 2 . 5 ) -ih E ( a . + H z . , a € INh

is on the boundary of the disc D ( 0 , C / . h ) . Let F ( h ) be the
set of values ( 2 . 4 ) inside the disc . We count the elements
of F ( h ) with their natural multiplicity . Then for suffi-
ciently small h there is a bijection b ( h ) from F ( h )
to the set of resonances of P inside D ( 0 , C ^ h ) , such that
b ( h ) ( p ) - p = o ( h ) uniformly with respect to p and h .

To state the complete asymptotic result , choose complex
symplectic coordinates centered at ( 0 , 0 ) ; ( x , ^ ) , such
that A is given by ^ = 0 and such that the corresponding

—iQincoming manifold for e H is given by x=0 . Then
p = Bx-£;+0( ( x , £ ; ) ) , where the spectrum of B is f z . , . . , z 1 .
Then we put

P,. = -i Bx-9 - U Z z . .0 x ]

The eigenvalues of P.. in the space ̂  °f polynomials of
degree < N are then the values -i Z ( a . + ^ ) z . with
| a j ̂  N . With C.. as before , we fix N so large that no
such values with | a [ > N are in the disc D(0,C/J .
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Theorem 2 . 2 . There exists a matrix F_ ( z , h ) : ̂ N -> Q>^ ,

depending holomorphically on z € D ( 0 , ( C ^ - t f ) h ) ( for some
5 > 0 ) , which is a classical symbol in h with an asymptotic

00

expansion F ( z , h ) ~ Z A . ( z ) h3 , where A/. = P/s-z ,
0 J u

such that the following holds :
Let r ( h ) be the set of roots in D ( 0 , C . h ) of

det F_ ( E / h , h ) , counted with their natural multiplicity.
A/Then for sufficiently small h , F ( h ) is equal to the

set of resonances of P inside D ( 0 , C — h ) .

3. Examples of resonances , which are second order poles
for the resolvent.

Here we only give a rough sketch and refer to [12] for
detailed statements and proofs. We shall produce our examples

2by a perturbation argument . In R , we consider the un-
perturbed Scrodinger operator

( 3 . 1 ) PQ = -h^+VQtx) ,

2where V/. ( x ) = -x . ( This potential is very large near
infinity , but enters into the general framework of [?] ,
besides the arguments of this section work equally well if
V.. is a rotation invariant analytic function with
V.. ( x ) = - 1 + o ( 1 ) as x —> °° in a domain | Im x I <_ C I Re x | ,
such that 0 is an absolute and non-degenerate maximum on (R
with V ^ ( 0 ) = 0 . ) The resonances of P.. are then

( 3 . 2 ) -ih(2+2 ( a . + a . ) ) , a = ( a . , o ^ ) € N2 .
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Here the "first" resonance -2ih is simple , but the

next one ; X.. (h) == -4ih is double . Now perturb the potential:

2 / 9
V = VQ + {hq^{x)^q^{x))ewx / z

where q . are real j-homogeneous polynomials and q, is

sufficiently small so that the theory of [7] applies with

the same standard escape function for P=-h A+V as for P/..

The double resonance \^(h) then splits into two possibly

equal resonances p of distance at most o ( h ) from X - ( h ) ,

and if we let F be the corresonding 2-dimensional sum of

eigenspaces , then the matrix of P _ for a suitable basis
r

in F is given by

( 3 . 3 ) XQl+h^q^q^h) = ^I+h^ (q^ ,q^) +0 (h3) .

Here M is a real-linear function of ( q ^ , q . ) , which can take

arbitrary values in the space of complex symmetric 2x2 -
ftj

matrices y while M is a smooth function of ( q - ) / q ^ ) ,
A» oo

with M-M = 0 (h ) in the C sense . We may assume that

q, is allowed to be so large that we may have M ( q ^ , q , ) take

any value in some neighborhood of

1 i\M" °i. -i)
in the space of complex symmetric 2x2-matrices . Otherwise

we could just replace M,. by a small positive multiple .

Now the complex 2x2-matrices near M^ with double eigenvalues

form a hypersurface H , and the elements of H are of the
r\

form \ +N , with N =0 , N^0 . It is easy to see that if

we restrict (q^q^) to SL suitable 2-dimensional real plane ,
A^

then the corresponding matrices M form a smooth real 2-dimensional
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surface , intersecting H tranversally at a point near M
The conclusion is then that for all sufficiently small values
of h , we can find q^ , q such that P has a resonance
X ( h ) of multiplicity 2 with X ( h ) - X ( h ) =o ( h ) , such that
if F is the corresponding 2-dimensional space , then
P F = X ( h ) + N ( h ) , where N^O , N^0. In particular ,
(P-z) has a second order pole at X ( h ) . It seems to have
been an open question wether such resonances exist.
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