@incollection{JEDP_1985___1_A5_0, author = {Ikawa, Mitsuru}, title = {On the poles of the scattering matrix for two convex obstacles}, booktitle = {}, series = {Journ\'ees \'equations aux d\'eriv\'ees partielles}, eid = {5}, pages = {1--14}, publisher = {Ecole polytechnique}, number = {1}, year = {1985}, zbl = {0587.35057}, language = {en}, url = {http://www.numdam.org/item/JEDP_1985___1_A5_0/} }
Ikawa, Mitsuru. On the poles of the scattering matrix for two convex obstacles. Journées équations aux dérivées partielles, no. 1 (1985), article no. 5, 14 p. http://www.numdam.org/item/JEDP_1985___1_A5_0/
[1] La relation de Poisson pour l'équation des ondes dans un ouvert non borné. Application à la théorie de la diffusion, Comm. Partial Diff. Equ., (1982), 905-958. | MR | Zbl
, and ,[2] Decay of solutions of the wave equation in the exterior of two convex obstacles, Osaka J. Math., 19 (1982), 459-509. | MR | Zbl
,[3] On the poles of the scattering matrix for two strictly convex obstacles, J. Math. Kyoto Univ., 23 (1983), 127-194. | MR | Zbl
,[4] On the poles of the scattering matrix for two strictly convex obstacles : Addendum, J. Math. Kyoto Univ., 23 (1983), 795-802. | Zbl
,[5] Trapping obstacles with a sequence of poles of the scattering matrix converging to the real axis, to appear in Osaka J. Math. | Zbl
,[6] Precise informations on the poles of the scattering matrix for two strictly convex obstacles, in preparation. | Zbl
,[7] Scattering theory, Academic Press, New York, (1967). | Zbl
and ,[8] A logarithmic bound on the location of the scattering matrix, Arch. Rat. Mech. and Anal., 40 (1971), 268-280. | MR | Zbl
and ,[9]
, to appear.[10] Polynomial bound on the distribution of poles in scattering by obstacles, Journées " Equations aux dérivées partielles ", Soc. Math. France, (1984). | Numdam | Zbl
,[11] Propriétés génériques des rayons réfléchissants et applications aux problèmes spectraux, Séminaire Bony-Sjöstrand-Meyer, 1984-1985, Exposé n° XII. | Numdam | Zbl
,[12] Periods of multiple reflecting geodesics and inverse spectral problems, preprint. | Zbl
and ,