JOURNÉES ÉQUATIONS AUX DÉRIVÉES PARTIELLES

Hassan Emamirad
 On the Lax-Phillips scattering theory for transport equation

Journées Équations aux dérivées partielles (1984), p. 1-8

<http://www.numdam.org/item?id=JEDP_1984 \qquad A8_0>
© Journées Équations aux dérivées partielles, 1984, tous droits réservés.
L'accès aux archives de la revue «Journées Équations aux dérivées partielles » (http://www. math.sciences.univ-nantes.fr/edpa/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

ON THE LAX \& PHILLIPS SCATTERING
THEORY FOR TRANSPORT EQUATION

H. EMAMIRAD

Let Ω be a bounded star shaped domain in \mathbb{R}^{n} and ρ the radius of a ball B_{ρ} around the origin which contains all the points of Ω. E_{+}the free forward and E the free backward point sets are defined as follow:

$$
\begin{aligned}
& E_{+}=\left\{(x, v) \varepsilon \mathbb{R}^{n} \times v \mid x \cdot v \geqq \rho\right\} \\
& E_{-}=\left\{(x, v) \varepsilon \mathbb{R}^{n} \times v \mid \quad x \cdot v \leqq-\rho\right\}
\end{aligned}
$$

Corresponding to the subsets $E_{ \pm}$one defines the incoming subspace D_{-}and outgoing subspace D_{+}by:

$$
D_{ \pm}=\left\{f \varepsilon X \mid \operatorname{supp} f \subset E_{ \pm}\right\}
$$

In [1] Lax \& Phillips have taken the unit sphere in \mathbb{R}^{n} as the velocity space V and $X=L^{2}\left(\operatorname{IR}^{n} \times V\right)$. They have shown that for $U_{o}(t)$ the oneparameter unitary group defined by $U_{o}(t) f(x, v)=f(x-v t, v)$ one has THEOREM 1. The subspaces D_{+}and D_{-}satisfy the following properties:
i) +
$\mathrm{U}_{0}(\mathrm{t}) \mathrm{D}_{+} \mathrm{C} \mathrm{D}_{+}$
for
$t \geqslant 0$
i)
$U_{o}(t) D_{-} C D_{-} \quad$ for $\quad t \leqq 0$
ii)

$$
\prod_{t \in \mathbb{R}^{n}} U_{o}(t) D_{ \pm}=\{0\}
$$

iii)

$$
\bigcup_{t \in \mathbb{R}^{n}} U_{o}(t) D_{ \pm} \quad \text { is dense in } X
$$

This theorem can be easily generalized to the case when V is an annulus contained in the unit ball of $I R^{n}$

$$
\mathrm{V}=\left\{\mathrm{v} \varepsilon \mathbb{R}^{\mathrm{n}}\left|0<\mathrm{v}_{\mathrm{m}} \leqq|\mathrm{v}| \leqq 1\right\}\right.
$$

and $X=L^{p}\left(\mathbb{R}^{n} \times V\right)$ for $1 \leqq p<\infty \quad$.
$\mathrm{U}_{\mathrm{O}}(\mathrm{t})$ is a strongly continuous positive group generated by free collision transport operator

$$
T_{o} f=-v \cdot \nabla_{x} f
$$

in any $L^{p}\left(\mathbb{R}^{n} \times V\right)$. For any λ in \mathbb{C} the only function which verifies $T_{o} \phi=\lambda \phi$ is

$$
\phi(x, v)=g\left(x_{\perp}, v\right) \exp \left\{-\lambda x \cdot v /|v|^{2}\right\}
$$

where $x_{\perp}=x-|v|^{-2}(x, v) v$. Hence for any g in $L^{\infty}\left(\mathbb{R}^{n} \times V\right)$, belongs also to $L^{\infty}\left(\mathbb{R}^{n} \times V\right)$ if and on $1 y$ if $\lambda=i \beta$ for any real β.

This shows that the nature of the spectrum of T_{o} depends on the exponent p in $I_{\rho} p$. In fact if we denote by $\Sigma\left(T_{0}\right)$ the spectrum of T_{0}, using $\Sigma_{p}\left(T_{0}\right)$, $\Sigma_{C}\left(T_{o}\right)$ and $\Sigma_{r}\left(T_{0}\right)$ to denote respectively the point spectrum, continuous spectrum and residual spectrum of T_{0}, we can prove the following peculiar result:

THEOREM 2. a) $\quad \Sigma\left(T_{o}\right)=\Sigma_{r}\left(T_{o}\right)=i R \quad$ in $L^{1}\left(R^{n} \times V\right)$.
b) $\quad \Sigma\left(T_{o}\right)=\Sigma_{c}\left(T_{o}\right)=i R \quad$ in $L^{2}\left(R^{n} \times V\right)$.
c) $\quad \Sigma\left(T_{0}\right)=\Sigma_{p}\left(T_{o}\right)=i \mathbf{R} \quad$ in $L^{\infty}\left(\mathbf{R}^{n} \times V\right)$.

One of our major aim in this paper is to show when the Lax \& Phillips representation theorem (Theorem 1.) is valid in $L^{1}\left(R^{n} \times V\right)$ for collision dynamics $U(t)$ the one parameter group generated by linearized Boltzmann operator

$$
T f=-v \cdot \nabla_{x} f-\sigma_{a}(x, v) f+\int_{V} k\left(x, v^{\prime}, v\right) f\left(x, v^{\prime}\right) d v^{\prime}
$$

where σ_{a} and k are two non-negative measurable functions on $R^{n} \times V$ and $R^{n} \times V \times V$ respectively. We define the production cross section σ_{p} by:

$$
\sigma_{p}(x, v)=\int_{V} k\left(x, v, v^{\prime}\right) d v^{\prime}
$$

and we suppose that the transport system

$$
\frac{\partial u}{\partial t}=T u \quad, \quad u(x, v, 0)=u_{o}(x, v) \varepsilon L^{1}\left(\mathbb{R}^{n} \times V\right)
$$

is admissible . i.e:
i) σ_{a} and σ_{p} belong to $L_{+}^{\infty}\left(\mathbb{R}^{n} \times V\right)$
ii) There is a compact set K in Ω so that σ_{a} and σ_{p} vanish if $x \notin K$.

In the Lax \& Phillips representation theorem the crucial point is the density property iii) . This property is closely related to the local decay property of the dynamics (see [2]). i.e For any compact subset K of R^{n} and any function f in $L^{1}\left(\mathbb{R}^{n} \times V\right)$

$$
\begin{equation*}
\int_{K \times V}|U(t) f(x, v)| d x d v \quad \rightarrow \quad 0 \tag{LD}
\end{equation*}
$$

as $|t| \rightarrow o$. It comes out that this last property is also intimately related with the spectral configuration of the infinitesimal generator T of $U(t)$. In fact one can never get (LD) if $\sigma_{p}(T) \neq \emptyset$. The following theorem shows that this may happen to our case.

THEOREM 3. In $L^{1}\left(R^{n} \times V\right), \quad \Sigma(T)=i R \sum_{p}(T)$ where $\Sigma_{p}(T)$ is either empty or at most a finite set of isolated pointd lying in the strip $\Lambda=\left\{\begin{array}{c}\text { z } \\ C\end{array}\right.$ $\left.-\mathrm{c} \leqq \operatorname{Rez} \leqq \mathrm{c}_{2}\right\} \quad$.

Sketch of the proof. Let us denote the operators A_{1} and A_{2} on $L^{1}\left(\mathbb{R}^{n} \times V\right)$ by:

$$
\begin{aligned}
& {\left[A_{1} f\right](x, v)=-\sigma_{a}(x, v) f(x, v)} \\
& {\left[A_{2} f\right](x, v)=\int_{V} k\left(x, v^{\prime}, v\right) f\left(x, v^{\prime}\right) d v^{\prime}}
\end{aligned}
$$

Put $A=A_{1}+A_{2}$ and $T_{1}=T_{0}+A_{1}$. Since A_{1} and A_{2} are bounded by $c_{1}=\left\|\sigma_{a}\right\|_{\infty}$ and $c_{2}=\left\|\sigma_{p}\right\|_{\infty}$ respectively. From the theory of semigroups one can deduce that $T=T_{0}+A$ generates an one-parameter group $U(t)$ and $\Sigma(\mathbb{T})$ lies in Λ with $c=c_{1}+c_{2}$. Let $L_{\lambda}=\left(\lambda-T_{1}\right)^{-1} A_{2}$. By virtue of Dunford-Pettis theorem one can show that $\lambda \rightarrow \mathrm{J}_{\lambda}^{2}$ is an analytic compact operator-valued function in C, and we have for $\operatorname{Re} \lambda \neq 0,\left\|L_{\lambda}^{2}\right\| \leqq\left\|A_{2}\right\|^{2} /|\operatorname{Re} \lambda|^{2}$. Hence L_{λ}^{2} tends to zero as \mid Re $\lambda \mid \rightarrow \infty$. Therefore 1 and -1 are not the eigenvalues for all operators L_{λ}^{2}. Thus by applying the analytic Fredholm Theorem $\left(I-L_{\lambda}^{2}\right)^{-1}$ exists, except at most a countable set of isolated points λ_{k}, where the function $\lambda \rightarrow\left(I-L_{\lambda}^{2}\right)^{-1}$ has a pole. From the two following algebric identities:

$$
\begin{aligned}
& \left(I-L_{\lambda}\right)^{-1}=\left(I+L_{\lambda}\right)\left(I-L_{\lambda}^{2}\right)^{-1} \\
& (\lambda-T)^{-1}=\left(I-L_{\lambda}\right)^{-1}\left(\lambda-T_{1}\right)^{-1}
\end{aligned}
$$

it follows that for $\operatorname{Re} \lambda \neq 0$ any pole of $\left(I-L_{\lambda}^{2}\right)^{-1}$ is an eigenvalue of T. The finiteness of the number of these eigenvalues will be proved later. Going back to the theorem 1. The proof of the assertions i) and ii) is a simple consequence of the following lemma.

LEMMA 4. For any $t \geqq 0[t \leqq 0]$ and any $f \varepsilon_{+} D_{+}\left[\begin{array}{ll}f & \left.D_{-}\right]\end{array}\right.$one has

$$
U(t) f=U_{0}(t) f
$$

Theorem 3 shows that the assertion iii) of Theoreml for $U(t)$ fails to be true in general case, but however we have:

THEOREM 5. The following assertions are equivalent
a) $\bigcup_{t \varepsilon R} U(t) D_{ \pm}$is dense in $L^{1}\left(R^{n} \times V\right)$
b) The local decay property (LD) holds .
c) The operator T admits neither eigenvalues on the complex plane nor resonances on the imaginary axis.

For implication b) \Rightarrow a) see [3]. In order to prove c) $\Rightarrow b$) we have to introduce the Lax \& Phillips semigroup $Z(t)$ for transport equation.

Let us define the projections $P_{ \pm}$on $L^{1}\left(\mathbb{R}^{n} \times V\right)$ by ${\underset{X}{ \pm}}^{f}=X \pm f$ where $X_{ \pm}$are the characteristic functions of $E_{ \pm}$and $X_{ \pm}^{\prime}=1-X_{ \pm}$. We define the Lax \& Phillips semigroup by:

$$
Z(t)=P_{+} U(t) P_{-}
$$

Let us consider K a subspace of $L^{1}\left(\mathbb{R}^{n} \times V\right)$ consisting of functions f which are identically zero on $\mathrm{F}_{+} \mathrm{U} \mathrm{E}_{-}$. THEOREM 6. The operators $\{Z(t) \mid t \geqq 0\}$ map K into itself and form strongly continuous semigroup on K. Furthermore it is a differentiable and compact semigroup for sufficiently large t.

The eigenvalues of B the infinitesimal generator of $Z(t)$ are called resonances and the compactness of $Z(t)$ implies that the spectrum of B is constituted of pure resonances . Furthermore the differentiability of $Z(t)$
implies that these resonances are lying in a logarithmic region of the form

$$
\Lambda=\{\lambda \varepsilon \mathbb{C}|\operatorname{Re} \lambda<a-b \log | \lambda \mid\}
$$

where a is real and $b>0$. Thus the following theorem proves the finiteness of $\sum_{p}(T)$. This theorem is based on the fact that any eigenfunction of T vanishes
out ${ }_{\text {of }} \Omega$.

THEOREM 7. $\quad \sum_{p}(T) \subset \Sigma(B)$.
Here the fundamental problem of the existence of such resonances arises In order to prove that $\Sigma(B) \neq \emptyset$ we will look to the interior transport problem which was posed by Jörgens [4]. He proved that in some circumstances the interior transport operator T^{J} admits eigenfunctions verifying the interior boundary condition:

$$
\phi(x, v)=0 \text { for } x \quad \varepsilon \partial \Omega \text { and } n(x) \cdot v<0
$$

where $n(x)$ is the exterior normal to Ω at x. By an extension of these eigenfunctions to whole space we prove

THEOREM 8. $\Sigma\left(\mathrm{T}^{\mathrm{J}}\right)=\Sigma(\mathrm{B})$.

This extension shows that the asymptotic form of these eigenfunctions look like $\exp \left\{-\mu \mathrm{x} \cdot \mathrm{v} /|\mathrm{v}|^{2}\right\}$ when $\mathrm{n}(\mathrm{x}) . \mathrm{v} \geqq 0$. According to Lax \& Phillips terminology we will call them generalized eigenfunctions.

By an analysis based on a complex residues computation we prove an eigenfunction expansion for $Z(t)$ which is asymptotically valid for large t. i.e: By arranging the eigenvalues μ_{j} of B in decreasing order of their real parts and denote by P_{j} the projection into the $j^{\text {th }}$ eigenspace and D_{j}^{k} the corresponding nilpotent operator of order k, one has

$$
Z(t) \simeq \sum_{\mu_{j}^{\varepsilon} \Sigma(B)} e^{\mu} j^{t}\left(P_{j}+\sum_{k} \frac{t^{k}}{k!} D_{j}^{k}\right)
$$

The following version of the above formula was suggested by Melrose[5], for wave equation which is more coherent to our setting.

THEOREM 9. For any f in $L^{1}\left(\mathbb{R}^{n} \times V\right)$ there exist a sequence μ_{j} in \mathbb{C} and generalized eigenfunctions $w_{j, k}, k=0, \ldots, m_{j-1}$ such that for any $n \in \mathbb{N}$ and $\varepsilon, 0<\varepsilon<\operatorname{Re}_{\mathrm{n}}-\operatorname{Re} \mu_{\mathrm{n}+1}$
for sufficiently large t. The constant c depends only on n and ε.

This theorem yields the implication $c) \Rightarrow b$) in theorem 5. We deduce also from compactness of $Z(t)$ and the fact that $\{0\} \not \sum_{p}(T)$ (see [6]) that a) $\Rightarrow c$. .

Finally we give a physically relvant situation in which the property b) of Theorem 5 occurs. This situation is presented by Hejtmanek [7] . He showed when the Dyson-Phillips expansion of $U(t)$ is finite, which physically means that the system is of finite collisions then the spectrum of T does not exceed the imaginary axis. We can conclude under the above condition Lax \& Phillips representation theorem is fully valid.
\qquad
REFERENCES
[1] P.LAX \& R.PHILLIPS , Scattering theory for transport phenomena. Proc. Conf.on Functional Analysis, Univ.California at Irvine , California 1966.
[2] P.LAX \&R.PHILLIPS , " Scattering Teory " Acad.Press, New York. 1967.
[3] H. EMAMIRAD, Thèse d'Etat . Université Paris-Nord . 1983.
[4] K. JƠRGENS , An asymptotic expansion in the theory of neutron transport. Comm. Pure Appl. Math. 11 (1958) 219-242.
[5] R.B.MELROSE, Singularities and energy decay in acoustical scattering. Duke Math.J. 49 (1979),43-59.
[6] V.PROTOPOPESCU, On the scattering matrix for the linear Boltzmann equation. Revue Roumanie Phys. 21 (1976) , 991-994.
[7] J. HEJTMANEK, Dynamics and spectrum of the linear multiple scattering operator in the Banach lattice $L^{1}\left(\mathbb{R}^{n} \times \mathbb{R}^{n}\right)$. Transport Theory Statis. Phys. 8 (1979) ,29-44.

Université P. \& M. Curie
Laboratoire de Mécanique
Théorique
4, P1ace Jussieu
75230 PARIS Cedex 05.

