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CONFERENCE N° III

Polynomial bound on the distribution of poles in scattering by an

obstacle.

by Richard Melrose.

Summary. Let ^C R , n 3 odd be a smooth compact obstacle. In the Lax-

Phi Hips scattering theory(|l| ) the scattering matrix for 0 wi th

Dirichlet, Neumann or Robin boundary condition is meromorphic in the

complex plane. Let {y . } be the sequence of these poles repeated according

to multiplicity and arranged to have |p.| non-decreasing. In this note it

is shown that there is a constant C such that

(*) N(r) = max {j ;|p.|.$ }r<C r^ c

The proof is similar to that in ] 2| for scattering by a potential wi th

compact support by sufficiently simplified that this rather precise grouth

is obtained, of the same as for the interior problem (after assistance

from D.Jerison).

1 „ Poles of the resolvent

Let ^)c R , n^3 odd, be a smooth compact obstacle. That is, 6 is

compact and is the closure of an open set wi th C°° boundary such that -Tl

= R \6 is connected. Set S =3^ ,a compact C°° oriented (towards FL)

embedded hypersurface. For a given choice of boundary condition :

^'^h D u Q" O(Dirichlet) or 9 u .=Y.u .(Robin)U,K o v b b
00

where y6. C (S) and 9 is the outward unit normal ; consider

D(A) = {u^ H2^ ; u satisfies (1 .1) - }
D D

With this domain, A=A is an unbounded self-adjoint operator on L Cn.).
D



2 -1
(1,2) Proposition, R(X)= (X -A ) is hoLomorphic in ImX < 0, except for a possi-— . — — . , . , . . — . . .— y

bLe finite number of poles on iR , as a bounded operator in L (-fl). As an opera-

tor R(X) : C°° (ID -> C°°CO, R(X) extends to be meromorphic in the X-plane

with poles and multiplicities, {A.} , the same as the scattering matrix of Lax

& Phi Hips.

Proof* Recall from j 1 [ , and for precise notation |2|, that the poles of the

scattering matrix of Lax & Phi Hips as just, with multiplicities , the eigen-

values of the infinitesimal generator, L , of the semi-group Z (t). Use of the
D B

modified Radon transform R of Lax S Phi Hips allows the resolvent R(X), for
oo -1

C ( ), to be expressed in terms of (X-L_) . From this the existence of the
0 D

meromorphic extension of R(X) and the identification of its poles with those

of (X-L ) , including multiplicities, is straight forward.
D

2. Reduction to the boundary

For ImX < 0 the boundary problem

(2.1) (A-X^u = 0 in H , ul = (f C C°°(S)
2

has a unique solution in L (A). The Neumann operator

NO): C°°(S) —^ C^S), N0)^ = 3 ul

is well-defined and hoLomorphic in Im X <0.

(2.2) Proposition. N(X) extends to a meromorphic family in the A-plane wi th

poles, including multiplicities, exactly the { X . } and values in the pseudo-

differential operators of order 1 or S.

Proof. N(X) can easily be represented in terms of R (X), and conversely. Thus,
00 00 —

if e : C (S) —«> C (^) is a linear extension operator then
u

N(X)a? = 3 e (<p + 9 ^ .R(A) ["(A-X^e (y)]

holds for In)A< 0, and hence proves the meromorphy of N (X), wi th poles



included amongst those of R (X), ie amongst the {X } .

The fact that the free problem 9= 0 has resolvent R^(X) wi th entire kernel

allots R(X) to be expressed in terms of N(X).

Consider the operators

(2.3) Q°(X) = R (A) (^.5 )| , G^O) = R (A) (^.6 )o ' \) " o T s

where 6 is the Dirac mass on S and 6 its normal derivative. The "jumps

formula" shows that

(2.4) u = (AX)^ + G^O) N(X)^

2 oo
ts the solution of (X -A)u = 0, u = f for ImA <0. If f t C W set w ( X ) =

o l C

R (A ) f<L C°°(S)) (by restriction), then

R ( A ) f = R (A)f - Q°(X)[R ( A ) f j 1 - C^O) [N(X)R (X) f | ]

shows that the poles of N(X) and R(X) must be identical.

^"^^ ^eJnarl<' Similar results can be proved for the Dirichlet operator for

a Robin boundary problem in precisely the same way.

^" ^e determinant

Recall that, for I m A < 0 , the operators

C^(X)V = (AX) v , C (X)V= S Q D ( X ) V /

(3«1)

C ^ ^ ( X ) V = G^ (X) V j^ , C^ (X)V =^^QN(X)V ^

define the Calderon projector :

C(X) =
^OO^ W^

t ^ O a) ^l^

for the operator \ ~A in -(I. The uniqueness of the solution to the Dirichlet

problem, for Im X < 0, therefore shows that



(3.1) CQoa) + ̂ l^ " N(x) = Id

(3.2) Proposition ; If A is the induced LapLacian on S then

(3.3) (A +1) 1 7 2 C,.(^)= IX + P (A)
S U i D

where Pp^) is an entire family of pseudodifferential operators of order -1

such that -1 is an eigenvalue of P^.) with algebraic multiplicity at least

that of X . as a pole of R(X).

Proof . The fact that Id- C (X) is entire shows that X . is, wi th multipli-

city, amongst the zeros of C—^) . Thus it suffices to show that P (X)

defined by (3.3) is a pseudo-differential family of order -1. In fact a

(C^(X)) = / 2 [ ^ | i n terms of the induced metric, so the proposition is im-

mediate,

For the Robin problem one obtains similarly

(3.4) 2. (A^+l)"172 |C^O) + C^(X) Y-Y |= 1^ + P^O)

where Pp^) has properties analogous to those of P (X).

(3.5) Remark. The operator IX +p(X) , which has the poles of the scat-

tering matrix amongst its zeroes, according to Proposition 3.2 also has the

squareroots of both signs of the eigenvalues of the interior problem as

zeroes. Since the distribution of the spectrum for the interor problem is

well-known any result on the distribution of the zeroes of Id+P(A) can be

translated to a a result on the distribution of the poles. Since a pseudo-

differential operator on S of order Less than L = dim S is trace class,

the function

(3,6) d^\) = del (Id + P^O) ) (n = 1+1 )
D D

is a well-defined entire function of X , Proposition 3.2 shows immediately



that

'^g^.) = 0 (with multiplicity).

4. Eigenvalue estimates.

Using (3.1) and the well-known explicit form of the fundamental solution

RQ^) (see for example j 2( ) it follows that

(4.1) p(A) = ]; c ^ T
, P P

P 1
is an entire function of exponential type :

(4.2) J C p | ^ c^1 /p !

1/2
with Tp= (A^+1) . T'p^ where T'p has Schwartz kernel

(4.3) K p = j x - y | -^P x,y S,p>2.

<4.4) PrQPOgition (with D.Jerison).The characteristic values of the

operators T satisfy
P

W^ cp+1 - X/Tp)< p. cP^/jP71

for some constant C, independant of p.

proof- The first estimate follows easily from the uniform bound

l^plj^ ' as an operator on L (S), which in turn follows from (4.3).

In the second estimate only the uniformity in p is at all subtle,

since any pseudodifferential operator of order p has characteristic values

bounded by K j"?71, I = dim S. Let T"p:C "(S)-^ c«>(C) be the operator with

kernel given by (4.3), where x 6 0,y 6 S. Giving the Sobolev spaces H"'(0)

the usual restriction norms :

^ ijji^w'172 "^



and interpolation for m>0, it follows easily by differentiation that

(4-5' ll̂ p 11 ^4 < 'pt1 p'llrli^s)
Thus, if H (S) is given the extension norm

(4.6) IH| - inf {|1^B^1;'?L=^}
P P • ? <<J

t h e n J | T 1 J| ^ p < P ' cp+l follows from (4.5).

A norm uniformily equivalent to (4.6), up to factors C13 , is realized by the

solution of the Dirichlet problem in 0. Using this, and suitable "almost analytic'

partitions of unity allows T " to be compared with a f ixed finite sum of the
th , .

P powers of the action of transversal vector fiels on the solution of the

Dirichlet problem. For such p powers of a f ixed operator the estimates
.p+1 .-p/l ., . . .
^ j on the characterist ic values are immediate, proving the Proposition.

5. Proof of (*)

For the Dirichlet problem it has already been remarked that the {p.}

of (*) are precisely the {\ L For the Robin problem there may be a finite

number of eigenvalues amongst the {A.}not usually included in the poles {p.}.

Naturally such niceties make no difference to the estimates (*). Standard results

on the distribution of zeroes of entire holomorphic functions of exponential type

show that (*) follows immediately from

(5.1) |^(A)| < C exp (C IXl") X C.

Wey l ' s connexity estimates show that
00

(5.2) ldg(X)| < n d+x^PO))")
j=1 -'

where \,(.P(.\)) are the characteristic values of P(X). Then (S.DfoLLows from

(5.2) and



(5.3) Proposition P-( ) as definied in (3.3.) or (3.4) there exists
i—.in . . .. - ^ - — y

a constant C such that

x.(pa)) $ c exp ( c j x j ) j < c | x | L

x.(pa)) < c \\\/]vi j> c | A | L.

Proof The first estimate follows from (4,1), (4.2) and the fir^t estimate in

Proposition 4,4, and is in fact valid for all j. Similarly from the second estima-

tes in Proposition 4.4, (4.2) and (4.1) it follows that , again using Weyl 's

convexity estimates :

^p«» < c.^ ̂ p

1 / I
Thus, if j > c |X | , far 00 large, this geometric series is bounded by

twice its first term, giving the second part of the Proposition.

(5.4) Remarks : Note that, just as in |2 [ , the important part of this

estimate is that P(X) has only polynomial many, in |A|, characteristic values

which are exponentially large in |X | . It is quite easy to prove a cruder version

of Proposition 4.4., with I replaced by n = 1+1. This has the effect of replacing

n in(*) by n+1. The interest in the more precise estimate (*) is that the two

contributions, the "Local" terms coming from the pseudodifferential character

of P( ) and the "global terms" coming from the exponential behaviour of the

kernel are apparently of the same order.

Thus, to improve (*) to a proper asymptotic estimate, with a precise leading

term probably of order n, it may be necessary to show either that the global

contributions are in fact of lowe order or else to derive an asymptotic expres-

sion for them.
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