On the wellposed singular boundary value problems for heat operator
Journées équations aux dérivées partielles (1983), article no. 9, 10 p.
@incollection{JEDP_1983____A9_0,
     author = {Mizohata, Sigeru},
     title = {On the wellposed singular boundary value problems for heat operator},
     booktitle = {},
     series = {Journ\'ees \'equations aux d\'eriv\'ees partielles},
     eid = {9},
     pages = {1--10},
     publisher = {Ecole polytechnique},
     year = {1983},
     zbl = {0543.35043},
     language = {en},
     url = {http://www.numdam.org/item/JEDP_1983____A9_0/}
}
TY  - JOUR
AU  - Mizohata, Sigeru
TI  - On the wellposed singular boundary value problems for heat operator
JO  - Journées équations aux dérivées partielles
PY  - 1983
SP  - 1
EP  - 10
PB  - Ecole polytechnique
UR  - http://www.numdam.org/item/JEDP_1983____A9_0/
LA  - en
ID  - JEDP_1983____A9_0
ER  - 
%0 Journal Article
%A Mizohata, Sigeru
%T On the wellposed singular boundary value problems for heat operator
%J Journées équations aux dérivées partielles
%D 1983
%P 1-10
%I Ecole polytechnique
%U http://www.numdam.org/item/JEDP_1983____A9_0/
%G en
%F JEDP_1983____A9_0
Mizohata, Sigeru. On the wellposed singular boundary value problems for heat operator. Journées équations aux dérivées partielles (1983), article  no. 9, 10 p. http://www.numdam.org/item/JEDP_1983____A9_0/

[1] K. Hayashida: "On the singular boundary value problem for elliptic equations". Trans. Amer. Math. Soc. 184 (1973) p. 205-22. | MR | Zbl

[2] S. Itô: "Fundamental solutions of parabolic differential equations and boundary value problems". Jap. J. Math. 27 (1957), 55-102. | MR | Zbl

[3] A. Kaji: "On the degenerate oblique derivative problems". Proc. Japan Acad. 50(1974), p. 1-5. | MR | Zbl

[4] Y. Kato: "Another approach to a non-elliptic boundary problem". Nagoya Math. J. 66 (1976), p. 13-22. | MR | Zbl

[5] T. Komura: "Groups of operators in locally convex spaces". J. Functional Anal. 7 (1968), p. 258-296. | MR | Zbl

[6] K. Taira: "Sur le problème de dérivée oblique I". J. Math. Pure Appl. 57 (1978), p. 379-395. | MR | Zbl