@article{JEDP_1983____A6_0, author = {Liess, Otto and Rodino, Luigi}, title = {A general class of {Gevrey-type} pseudo differential operators}, journal = {Journ\'ees \'equations aux d\'eriv\'ees partielles}, eid = {6}, pages = {1--8}, publisher = {Ecole polytechnique}, year = {1983}, zbl = {0516.35086}, language = {en}, url = {http://www.numdam.org/item/JEDP_1983____A6_0/} }
Liess, Otto; Rodino, Luigi. A general class of Gevrey-type pseudo differential operators. Journées équations aux dérivées partielles (1983), article no. 6, 8 p. http://www.numdam.org/item/JEDP_1983____A6_0/
[1] A general calculus of pseudo differential operators, Duke Math. J., 42 (1975), 1-42. | MR | Zbl
,[2] Régularité Gevrey et itérés pour une classe d'opérateurs hypoelliptiques, Rend.Sem.Mat.Univ.Politecnico Torino, 40 (1982), to appear.
- - ,[3] Paramétrixes d'opérateurs pseudo différentiels à caractéristiques multiples, Astérisque, 34-35 (1976), 93-123. | Numdam | MR | Zbl
- - ,[4] Uniqueness theorems and wave front sets for solutions of linear differential equations with analytic coefficients, C.P.A.M., 24 (1971), 671-704. | MR | Zbl
,[5] Opérateurs hypoelliptiques dans les espaces de Gevrey, Bull.Soc.Sci.Math., Roumanie (1983), to appear. | MR | Zbl
,[6] Intersection properties of weak analytically uniform classes of functions, Ark. Mat., 14 (1976), 93-111. | MR | Zbl
,[7] Inhomogeneous Gevrey classes and related pseudo differential operators, preprint (1983).
- ,[8] Opérateurs pseudo différentials et classes de Grevrey, Journées Equations aux derivées partielles, Saint Jean de Monts 1982, conf. n. 12. | Numdam | Zbl
,[9] Parametrices for a class of pseudo differential operators, Annali Mat.Pura ed Appl., 125 (1980), 221-278. | MR | Zbl
- ,[10] Microlocal analysis for spatially inhomogeneous pseudo differential operators, Ann.Scuola Norm.Sup.Pisa, ser.IV, 9 (1982), 211-253. | Numdam | MR | Zbl
,[11] On the Gevrey wave front set of the solutions of a quasi-elliptic degenerate equation, Rend.Sem.Mat.Univ.Politecnico Torino, 40 (1982), to appear.
,[12] Iterati di operatori e regolarità Gevrey microlocale anisotropa, Rend.Sem.Mat.Padova, 17 (1982), 85-104. | Numdam | MR | Zbl
,