Abelian periods, partial words, and an extension of a theorem of Fine and Wilf
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 47 (2013) no. 3, pp. 215-234.

Recently, Constantinescu and Ilie proved a variant of the well-known periodicity theorem of Fine and Wilf in the case of two relatively prime abelian periods and conjectured a result for the case of two non-relatively prime abelian periods. In this paper, we answer some open problems they suggested. We show that their conjecture is false but we give bounds, that depend on the two abelian periods, such that the conjecture is true for all words having length at least those bounds and show that some of them are optimal. We also extend their study to the context of partial words, giving optimal lengths and describing an algorithm for constructing optimal words.

DOI : 10.1051/ita/2013034
Classification : 68R15, 68Q25
Mots-clés : combinatorics on words, Fine and Wilf's theorem, partial words, abelian periods, periods, optimal lengths
@article{ITA_2013__47_3_215_0,
     author = {Blanchet-Sadri, Francine and Simmons, Sean and Tebbe, Amelia and Veprauskas, Amy},
     title = {Abelian periods, partial words, and an extension of a theorem of {Fine} and {Wilf}},
     journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications},
     pages = {215--234},
     publisher = {EDP-Sciences},
     volume = {47},
     number = {3},
     year = {2013},
     doi = {10.1051/ita/2013034},
     mrnumber = {3103125},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/ita/2013034/}
}
TY  - JOUR
AU  - Blanchet-Sadri, Francine
AU  - Simmons, Sean
AU  - Tebbe, Amelia
AU  - Veprauskas, Amy
TI  - Abelian periods, partial words, and an extension of a theorem of Fine and Wilf
JO  - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY  - 2013
SP  - 215
EP  - 234
VL  - 47
IS  - 3
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/ita/2013034/
DO  - 10.1051/ita/2013034
LA  - en
ID  - ITA_2013__47_3_215_0
ER  - 
%0 Journal Article
%A Blanchet-Sadri, Francine
%A Simmons, Sean
%A Tebbe, Amelia
%A Veprauskas, Amy
%T Abelian periods, partial words, and an extension of a theorem of Fine and Wilf
%J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
%D 2013
%P 215-234
%V 47
%N 3
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/ita/2013034/
%R 10.1051/ita/2013034
%G en
%F ITA_2013__47_3_215_0
Blanchet-Sadri, Francine; Simmons, Sean; Tebbe, Amelia; Veprauskas, Amy. Abelian periods, partial words, and an extension of a theorem of Fine and Wilf. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 47 (2013) no. 3, pp. 215-234. doi : 10.1051/ita/2013034. http://www.numdam.org/articles/10.1051/ita/2013034/

[1] S.V. Avgustinovich, A. Glen, B.V. Halldórsson and S. Kitaev, On shortest crucial words avoiding abelian powers. Discrete Appl. Math. 158 (2010) 605-607. | MR | Zbl

[2] S.V. Avgustinovich, J. Karhumäki and S. Puzynina, On abelian versions of the critical factorization theorem. In JM 2010, 13ièmes Journées Montoises d'Informatique Théorique, Amiens, France (2010). | Numdam | Zbl

[3] J. Berstel and L. Boasson, Partial words and a theorem of Fine and Wilf. Theoret. Comput. Sci. 218 (1999) 135-141. | MR | Zbl

[4] F. Blanchet-Sadri, Algorithmic Combinatorics on Partial Words. Chapman & Hall/CRC Press, Boca Raton, FL (2008). | MR | Zbl

[5] F. Blanchet-Sadri, J.I. Kim, R. Mercaş, W. Severa, S. Simmons and D. Xu, Avoiding abelian squares in partial words. J. Combin. Theory Ser. A 119 (2012) 257-270. | MR | Zbl

[6] F. Blanchet-Sadri, T. Mandel and G. Sisodia, Periods in partial words: An algorithm. J. Discrete Algorithms 16 (2012) 113-128. | MR | Zbl

[7] F. Blanchet-Sadri, T. Oey and T. Rankin, Fine and Wilf's theorem for partial words with arbitrarily many weak periods. Internat. J. Foundations Comput. Sci. 21 (2010) 705-722. | MR | Zbl

[8] F. Blanchet-Sadri, S. Simmons and D. Xu, Abelian repetitions in partial words. Adv. Appl. Math. 48 (2012) 194-214. | MR | Zbl

[9] F. Blanchet-Sadri, A. Tebbe and A. Veprauskas, Fine and Wilf's theorem for abelian periods in partial words. In JM 2010, 13ièmes Journées Montoises d'Informatique Théorique, Amiens, France (2010).

[10] M.G. Castelli, F. Mignosi and A. Restivo, Fine and Wilf's theorem for three periods and a generalization of Sturmian words. Theoret. Comput. Sci. 218 (1999) 83-94. | MR | Zbl

[11] C. Choffrut and J. Karhumäki, Combinatorics of Words. In Handbook of Formal Languages, edited by G. Rozenberg and A. Salomaa, Springer-Verlag, Berlin Vol. 1 (1997) 329-438. | MR | Zbl

[12] S. Constantinescu and L. Ilie, Generalised Fine and Wilf's theorem for arbitrary number of periods. Theor. Comput. Sci. 339 (2005) 49-60. | MR | Zbl

[13] S. Constantinescu and L. Ilie, Fine and Wilf's theorem for abelian periods. Bull. Eur. Assoc. Theor. Comput. Sci. 89 (2006) 167-170. | MR | Zbl

[14] L.J. Cummings and W.F. Smyth, Weak repetitions in strings. J. Combin. Math. Combin. Comput. 24 (1997) 33-48. | MR | Zbl

[15] J. Currie and A. Aberkane, A cyclic binary morphism avoiding abelian fourth powers. Theoret. Comput. Sci. 410 (2009) 44-52. | MR | Zbl

[16] M. Domaratzki and N. Rampersad, Abelian primitive words. In DLT 2011, 15th International Conference on Developments in Language Theory, Milano, Italy, Lect. Notes Comput. Sci. Vol. 6795 edited by G. Mauri and A. Leporati. Springer-Verlag, Berlin, Heidelberg (2011) 204-215. | MR | Zbl

[17] G. Fici, T. Lecroq, A. Lefebvre and E. Prieur-Gaston, Computing abelian periods in words. PSC 2011, Prague Stringology Conference, Prague, Czech Republic, (2011) 184-196.

[18] N.J. Fine and H.S. Wilf, Uniqueness theorems for periodic functions. Proc. Amer. Math. Soc. 16 (1965) 109-114. | MR | Zbl

[19] V. Halava, T. Harju and T. Kärki, Interaction properties of relational periods. Discrete Math. Theoret. Comput. Sci. 10 (2008) 87-112. | MR | Zbl

[20] J. Justin, On a paper by Castelli, Mignosi, Restivo. Theoret. Inform. Appl. 34 (2000) 373-377. | Numdam | MR | Zbl

[21] V. Keränen, Abelian squares are avoidable on 4 letters. In ICALP 1992, 19th International Colloquium on Automata, Languages and Programming, Lect. Notes Comput. Sci. Vol. 623 edited by W. Kuich. Springer-Verlag, Berlin (1992) 241-52. | MR

[22] A.V. Samsonov and A.M. Shur, On abelian repetition threshold. In JM 2010, 13ièmes Journées Montoises d'Informatique Théorique, Amiens, France (2010). | Numdam | Zbl

[23] A.M. Shur and Y.V. Gamzova, Partial words and the interaction property of periods. Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya 68 (2004) 191-214. | MR | Zbl

[24] A.M. Shur and Y.V. Konovalova, On the periods of partial words. In MFCS 2001, 26th International Symposium on Mathematical Foundations of Computer Science, Lect. Notes Comput. Sci. Vol. 2136 edited by J. Sgall, A. Pultr and P. Kolman. London, UK, Springer-Verlag. (2001) 657-665. | MR | Zbl

[25] W. F. Smyth and S. Wang, A new approach to the periodicity lemma on strings with holes. Theoret. Comput. Sci. 410 (2009) 4295-4302. | MR | Zbl

[26] R. Tijdeman and L. Zamboni, Fine and Wilf words for any periods. Indagationes Math. 14 (2003) 135-147. | MR | Zbl

Cité par Sources :