Rational base number systems for p-adic numbers
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 46 (2012) no. 1, pp. 87-106.

This paper deals with rational base number systems for p-adic numbers. We mainly focus on the system proposed by Akiyama et al. in 2008, but we also show that this system is in some sense isomorphic to some other rational base number systems by means of finite transducers. We identify the numbers with finite and eventually periodic representations and we also determine the number of representations of a given p-adic number.

DOI : 10.1051/ita/2011114
Classification : 11A67, 11E95
Mots-clés : rational base number systems, p-adic numbers
@article{ITA_2012__46_1_87_0,
     author = {Frougny, Christiane and Klouda, Karel},
     title = {Rational base number systems for $p$-adic numbers},
     journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications},
     pages = {87--106},
     publisher = {EDP-Sciences},
     volume = {46},
     number = {1},
     year = {2012},
     doi = {10.1051/ita/2011114},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/ita/2011114/}
}
TY  - JOUR
AU  - Frougny, Christiane
AU  - Klouda, Karel
TI  - Rational base number systems for $p$-adic numbers
JO  - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY  - 2012
SP  - 87
EP  - 106
VL  - 46
IS  - 1
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/ita/2011114/
DO  - 10.1051/ita/2011114
LA  - en
ID  - ITA_2012__46_1_87_0
ER  - 
%0 Journal Article
%A Frougny, Christiane
%A Klouda, Karel
%T Rational base number systems for $p$-adic numbers
%J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
%D 2012
%P 87-106
%V 46
%N 1
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/ita/2011114/
%R 10.1051/ita/2011114
%G en
%F ITA_2012__46_1_87_0
Frougny, Christiane; Klouda, Karel. Rational base number systems for $p$-adic numbers. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 46 (2012) no. 1, pp. 87-106. doi : 10.1051/ita/2011114. http://www.numdam.org/articles/10.1051/ita/2011114/

[1] S. Akiyama, Ch. Frougny and J. Sakarovitch, Powers of rationals modulo 1 and rational base number systems. Isr. J. Math. 168 (2008) 53-91. | MR | Zbl

[2] I. Kátai and J. Szabó, Canonical number systems for complex integers. Acta Sci. Math. (Szeged) 37 (1975) 255-260. | MR | Zbl

[3] M. Lothaire, Algebraic Combinatorics on Words, Encyclopedia of Mathematics and its Applications 95. Cambridge University Press (2002). | MR | Zbl

[4] K. Mahler, An unsolved problem on the powers of 3/2. J. Austral. Math. Soc. 8 (1968) 313-321. | MR | Zbl

[5] M.R. Murty, Introduction to p-adic analytic number theory. American Mathematical Society (2002). | MR | Zbl

[6] A. Odlyzko and H. Wilf, Functional iteration and the Josephus problem. Glasg. Math. J. 33 (1991) 235-240. | MR | Zbl

[7] A. Rényi, Representations for real numbers and their ergodic properties. Acta Math. Acad. Sci. Hungar. 8 (1957) 477-493. | MR | Zbl

[8] W.J. Robinson, The Josephus problem. Math. Gaz. 44 (1960) 47-52. | MR

[9] J. Sakarovitch, Elements of Automata Theory. Cambridge University Press, New York (2009). | MR | Zbl

Cité par Sources :