Quantum annealing, or quantum stochastic optimization, is a classical randomized algorithm which provides good heuristics for the solution of hard optimization problems. The algorithm, suggested by the behaviour of quantum systems, is an example of proficuous cross contamination between classical and quantum computer science. In this survey paper we illustrate how hard combinatorial problems are tackled by quantum computation and present some examples of the heuristics provided by quantum annealing. We also present preliminary results about the application of quantum dissipation (as an alternative to imaginary time evolution) to the task of driving a quantum system toward its state of lowest energy.
Mots-clés : combinatorial optimization, adiabatic quantum computation, quantum annealing, dissipative dynamics
@article{ITA_2011__45_1_99_0, author = {de Falco, Diego and Tamascelli, Dario}, title = {An introduction to quantum annealing}, journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications}, pages = {99--116}, publisher = {EDP-Sciences}, volume = {45}, number = {1}, year = {2011}, doi = {10.1051/ita/2011013}, mrnumber = {2776856}, zbl = {1219.68105}, language = {en}, url = {https://www.numdam.org/articles/10.1051/ita/2011013/} }
TY - JOUR AU - de Falco, Diego AU - Tamascelli, Dario TI - An introduction to quantum annealing JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications PY - 2011 SP - 99 EP - 116 VL - 45 IS - 1 PB - EDP-Sciences UR - https://www.numdam.org/articles/10.1051/ita/2011013/ DO - 10.1051/ita/2011013 LA - en ID - ITA_2011__45_1_99_0 ER -
%0 Journal Article %A de Falco, Diego %A Tamascelli, Dario %T An introduction to quantum annealing %J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications %D 2011 %P 99-116 %V 45 %N 1 %I EDP-Sciences %U https://www.numdam.org/articles/10.1051/ita/2011013/ %R 10.1051/ita/2011013 %G en %F ITA_2011__45_1_99_0
de Falco, Diego; Tamascelli, Dario. An introduction to quantum annealing. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 45 (2011) no. 1, pp. 99-116. doi : 10.1051/ita/2011013. https://www.numdam.org/articles/10.1051/ita/2011013/
[1] Adiabatic quantum computation is equivalent to standard quantum computation. SIAM J. Comput. 37 (2007) 166. | MR | Zbl
et al.,[2] Energy forms, Hamiltonians and distorted Brownian paths. J. Math. Phys. 18 (1977) 907-917. | MR | Zbl
, and ,[3] Anderson localization casts clouds over adiabatic quantum optimization. arXiv:0912.0746v1 (2009).
, and ,[4] Global minimum searches using an approximate solution of the imaginary time Schrödinger equation. J. Chem. Phys. 97 (1993) 6715-6721.
, and ,[5] An elementary proof of the quantum adiabatic theorem. arXiv:quant-ph/0411152 (2004).
and ,[6] First order quantum phase transition in adiabatic quantum computation. arXiv:quant-ph/0904.1387v3 (2009).
and .[7] Absence of diffusion in certain random lattices. Phys. Rev. 109 (1958) 1492-1505.
,[8] Quantum stochastic optimization. Stoc. Proc. Appl. 33 (1989) 223-244. | MR | Zbl
, and ,[9] A numerical implementation of Quantum Annealing, in Stochastic Processes, Physics and Geometry, Proceedings of the Ascona/Locarno Conference, 4-9 July 1988. Albeverio et al., Eds. World Scientific (1990), 97-111. | MR
, and ,[10] Deterministic and stochastic quantum annealing approaches. Lecture Notes in Computer Physics 206 (2005) 171-206.
, , , and ,[11] Quantum complexity theory. SIAM J. Comput. 26 (1997) 1411-1473. | MR | Zbl
and ,[12] Über die Quantenmechanik der Elektronen in Kristallgittern. Z. Phys. 52 (1929) 555-600. | JFM
,[13] Beweis des Adiabatensatzes. Z. Phys. A 51 (1928) 165. | JFM
and ,[14] Efficient algorithm for a quantum analogue of 2-sat. arXiV:quant-ph/0602108 (2006). | MR | Zbl
,[15] The theory of open quantum systems. Oxford University Press, New York (2002). | MR | Zbl
and ,[16] Speed and entropy of an interacting continuous time quantum walk. J. Phys. A 39 (2006) 5873-5895. | MR | Zbl
and ,[17] Quantum annealing and the Schrödinger-Langevin-Kostin equation. Phys. Rev. A 79 (2009) 012315.
and ,[18] Dissipative quantum annealing, in Proceedings of the 29th Conference on Quantum Probability and Related Topics. World Scientific (2009) (in press). | MR | Zbl
, and ,[19] Quantum theory, the Church-Turing principle and the universal quantum computer. Proc. R. Soc. Lond. A 400 (1985) 97-117. | MR | Zbl
,[20] Stochastic ground-state processes. Phys. Rev. B 50 (1994) 5035-5040.
and ,[21] Quantum computation by adiabatic evolution. arXiv:quant-ph/0001106v1 (2000).
et al.,[22] A quantum adiabatic evolution algorithm applied to random instances of an NP-Complete problem. Science (2001) 292. | MR | Zbl
et al.,[23] Simulating physics with computers. Int. J. Theor. Phys. 21 (1982) 467-488. | MR
,[24] Space-time approach to non-relativistic quantum mechanics. Rev. Mod. Phys. 20 (1948) 367-387. | MR
,[25] Statistical mechanics of assemblies of coupled oscillators. J. Math. Phys. 6 (1965) 504-515. | MR | Zbl
, and ,[26] Minimization of the potential energy surface of Lennard-Jones clusters by quantum optimization. Chem. Rev. Lett. 412 (2005) 125-130.
and ,[27] Colliding heavy ions: Nuclei as dynamical fluids. Rev. Mod. Phys. 48 (1976) 467-477.
and ,[28] A fast quantum-mechanical algorithm for database search, in Proc. 28th Annual ACM Symposium on the Theory of Computing. ACM, New York (1996). | MR | Zbl
,[29] From Schrödinger equation to the quantum search algorithm. Am. J. Phys. 69 (2001) 769-777.
,[30] Adiabatic quantum computing for random satisfiability problems. Phys. Rev. A 67 (2003) 022314.
,[31] Optimization by simulated annealing: An experimental evaluation; part i, graph partitioning. Oper. Res. 37 (1989) 865-892. | Zbl
, , and ,[32] New approach to the semiclassical limit of quantum mechanics. i. Multiple tunnelling in one dimension. Commun. Math. Phys. 80 (1981) 223-254. | MR | Zbl
, and ,[33] On distributions of certain Wiener functionals. Trans. Am. Math. Soc. (1949) 1-13. | MR | Zbl
,[34] The complexity of the local Hamiltonian problem. SIAM J. Comput. 35 (2006) 1070-1097. | MR | Zbl
, and ,[35] Optimization by simulated annealing. Science 220 (1983) 671-680. | MR | Zbl
, and ,[36] On the Schrödinger-Langevin equation. J. Chem. Phys. 57 (1972) 3589-3591.
,[37] Friction and dissipative phenomena in quantum mechanics. J. Statist. Phys. 12 (1975) 145-151.
,[38] Quantum annealing for clustering. arXiv:quant-ph/09053527v2 (2009).
, and ,[39] On product, generic and random generic quantum satisfiability. arXiv:quant-ph/0910.2058v1 (2009).
et al.,[40] Phase transitions and random quantum satisfiability. arXiv:quant-ph/0903.1904v1 (2009).
et al.,[41] Quantum Mechanics. John Wiley and Sons (1958). | Zbl
,[42] Mathematical foundations of quantum annealing. J. Math. Phys. 49 (2008) 125210. | MR | Zbl
and ,[43] Combinatorial optimization: algorithms and complexity. Dover New York (1998). | MR | Zbl
and ,[44] The quantum adiabatic optimization algorithm and local minima, in Proc. 36th STOC (2004) 502. | MR | Zbl
,[45] Optimization using quantum mechanics: quantum annealing through adiabatic evolution. J. Phys. A 39 (2006) R393-R431. | MR | Zbl
and ,[46] Optimization using quantum mechanics: quantum annealing through adiabatic evolution. J. Phys. A: Math. Theor. 41 (2008) 209801. | MR | Zbl
and ,[47] Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26 (1997) 1484. | MR | Zbl
,[48] Optimization by quantum annealing: Lessons from simple cases. Phys. Rev. B 72 (2005) 014303.
, and ,[49] How powerful is adiabatic quantum computation. Proc. FOCS '01 (2001). | MR
, and ,[50] Succint quantum proofs for properties of finite groups, in Proc. IEEE FOCS (2000) 537-546. | MR
,[51] Size dependence of the minimum excitation gap in the quantum adiabatic algorithm. Phys. Rev. Lett. 101 (2008) 170503.
, and .[52] Time-dependent density functional theory for open quantum systems with unitary propagation. arXiv:cond-mat.mtrl-sci/0902.4505v3 (2009).
et al.,[53] A theory of the electrical breakdown of solid dielectrics. Proc. R. Soc. Lond. A 145 (1934) 523-529. | Zbl
,[54] Exponential complexity of an adiabatic algorithm for an np-complete problem. Phys. Rev. A 73 (2006) 022329.
and ,- Hybrid quantum annealing genetic algorithm with auxiliary resource dispatching for TFT-LCD array photolithography scheduling and an empirical study, Computers Industrial Engineering, Volume 203 (2025), p. 110989 | DOI:10.1016/j.cie.2025.110989
- Performance of Quantum Annealing Machine Learning Classification Models on ADMET Datasets, IEEE Access, Volume 13 (2025), p. 16263 | DOI:10.1109/access.2025.3531391
- A 28 nm Ising machine with adaptive majority voter and reduction algorithms for high-performance combinatorial optimization, Microelectronics Journal, Volume 159 (2025), p. 106621 | DOI:10.1016/j.mejo.2025.106621
- Load balancing for high performance computing using quantum annealing, Physical Review Research, Volume 7 (2025) no. 1 | DOI:10.1103/physrevresearch.7.013067
- Numerical analysis of quantization‐based optimization, ETRI Journal, Volume 46 (2024) no. 3, p. 367 | DOI:10.4218/etrij.2023-0083
- Homotopic quantum fuzzy adaptive simulated annealing [HQF ASA], Information Sciences, Volume 669 (2024), p. 120529 | DOI:10.1016/j.ins.2024.120529
- Benchmarking Metaheuristic-Integrated QAOA Against Quantum Annealing, Intelligent Computing, Volume 1018 (2024), p. 651 | DOI:10.1007/978-3-031-62269-4_42
- A feasibility-preserved quantum approximate Solver for the capacitated vehicle routing problem, Quantum Information Processing, Volume 23 (2024) no. 8, p. 24 (Id/No 291) | DOI:10.1007/s11128-024-04497-5 | Zbl:7898031
- Unbalanced penalization: a new approach to encode inequality constraints of combinatorial problems for quantum optimization algorithms, Quantum Science and Technology, Volume 9 (2024) no. 2, p. 025022 | DOI:10.1088/2058-9565/ad35e4
- Predictive modeling of compressive strength of geopolymer concrete before and after high temperature applying machine learning algorithms, Structural Concrete (2024) | DOI:10.1002/suco.202400552
- Quantum computing for power systems: Tutorial, review, challenges, and prospects, Electric Power Systems Research, Volume 223 (2023), p. 109530 | DOI:10.1016/j.epsr.2023.109530
- Quantum hybrid algorithm for solving SAT problem, Engineering Applications of Artificial Intelligence, Volume 121 (2023), p. 106058 | DOI:10.1016/j.engappai.2023.106058
- Battleship, tomography and quantum annealing, European Journal of Applied Mathematics, Volume 34 (2023) no. 4, pp. 758-773 | DOI:10.1017/s0956792522000377 | Zbl:7930489
- Quantum Machine Learning in Prediction of Breast Cancer, Quantum Computing: A Shift from Bits to Qubits, Volume 1085 (2023), p. 351 | DOI:10.1007/978-981-19-9530-9_19
- Quantum Dot Phase Transition Simulation with Hybrid Quantum Annealing via Metropolis-Adjusted Stochastic Gradient Langevin Dynamics, Advances in Condensed Matter Physics, Volume 2022 (2022), p. 1 | DOI:10.1155/2022/9711407
- Blockchain-Empowered Mobile Edge Intelligence, Machine Learning and Secure Data Sharing, Blockchain Potential in AI (2022) | DOI:10.5772/intechopen.96618
- , GLOBECOM 2022 - 2022 IEEE Global Communications Conference (2022), p. 2517 | DOI:10.1109/globecom48099.2022.10001657
- Shortening the gap between pre- and post-layout analog IC performance by reducing the LDE-induced variations with multi-objective simulated quantum annealing, Engineering Applications of Artificial Intelligence, Volume 98 (2021), p. 104102 | DOI:10.1016/j.engappai.2020.104102
- Using quantum annealers to calculate ground state properties of molecules, The Journal of Chemical Physics, Volume 154 (2021) no. 3 | DOI:10.1063/5.0030397
- FPGA Implementation of Hardware-Oriented Chaotic Boltzmann Machines, IEEE Access, Volume 8 (2020), p. 204360 | DOI:10.1109/access.2020.3036882
- Effect of fluctuation in the coupling strength on critical dynamics of 1D transverse field quantum Ising model, International Journal of Theoretical Physics, Volume 59 (2020) no. 1, pp. 250-260 | DOI:10.1007/s10773-019-04320-3 | Zbl:1434.82050
- Mapping graph coloring to quantum annealing, Quantum Machine Intelligence, Volume 2 (2020) no. 2 | DOI:10.1007/s42484-020-00028-4
- A Quantum-Annealing-Based Approach to Optimize the Deployment Cost of a Multi-Sink Multi-Controller WSN, Procedia Computer Science, Volume 155 (2019), p. 250 | DOI:10.1016/j.procs.2019.08.036
- Deterministic quantum annealing expectation-maximization algorithm, Journal of Statistical Mechanics: Theory and Experiment, Volume 2017 (2017) no. 11, p. 22 (Id/No 113404) | DOI:10.1088/1742-5468/aa967e | Zbl:1456.68159
- Complex semiclassical analysis of the Loschmidt amplitude and dynamical quantum phase transitions, Physical Review B, Volume 95 (2017) no. 17 | DOI:10.1103/physrevb.95.174305
- , 2016 American Control Conference (ACC) (2016), p. 4779 | DOI:10.1109/acc.2016.7526110
- , 2016 IEEE 55th Conference on Decision and Control (CDC) (2016), p. 4674 | DOI:10.1109/cdc.2016.7798981
- Further results on generalized conditional entropies, RAIRO. Theoretical Informatics and Applications, Volume 49 (2015) no. 1, pp. 67-92 | DOI:10.1051/ita/2014029 | Zbl:1395.94219
- Adiabatic Quantum Computation and Quantum Annealing, 2014 | DOI:10.1007/978-3-031-02518-1
Cité par 29 documents. Sources : Crossref, zbMATH