An introduction to quantum annealing
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 45 (2011) no. 1, pp. 99-116.

Quantum annealing, or quantum stochastic optimization, is a classical randomized algorithm which provides good heuristics for the solution of hard optimization problems. The algorithm, suggested by the behaviour of quantum systems, is an example of proficuous cross contamination between classical and quantum computer science. In this survey paper we illustrate how hard combinatorial problems are tackled by quantum computation and present some examples of the heuristics provided by quantum annealing. We also present preliminary results about the application of quantum dissipation (as an alternative to imaginary time evolution) to the task of driving a quantum system toward its state of lowest energy.

DOI : 10.1051/ita/2011013
Classification : 81P68, 68Q12, 68W25
Mots-clés : combinatorial optimization, adiabatic quantum computation, quantum annealing, dissipative dynamics
@article{ITA_2011__45_1_99_0,
     author = {de Falco, Diego and Tamascelli, Dario},
     title = {An introduction to quantum annealing},
     journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications},
     pages = {99--116},
     publisher = {EDP-Sciences},
     volume = {45},
     number = {1},
     year = {2011},
     doi = {10.1051/ita/2011013},
     mrnumber = {2776856},
     zbl = {1219.68105},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/ita/2011013/}
}
TY  - JOUR
AU  - de Falco, Diego
AU  - Tamascelli, Dario
TI  - An introduction to quantum annealing
JO  - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY  - 2011
SP  - 99
EP  - 116
VL  - 45
IS  - 1
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/ita/2011013/
DO  - 10.1051/ita/2011013
LA  - en
ID  - ITA_2011__45_1_99_0
ER  - 
%0 Journal Article
%A de Falco, Diego
%A Tamascelli, Dario
%T An introduction to quantum annealing
%J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
%D 2011
%P 99-116
%V 45
%N 1
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/ita/2011013/
%R 10.1051/ita/2011013
%G en
%F ITA_2011__45_1_99_0
de Falco, Diego; Tamascelli, Dario. An introduction to quantum annealing. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 45 (2011) no. 1, pp. 99-116. doi : 10.1051/ita/2011013. https://www.numdam.org/articles/10.1051/ita/2011013/

[1] D. Aharonov et al., Adiabatic quantum computation is equivalent to standard quantum computation. SIAM J. Comput. 37 (2007) 166. | MR | Zbl

[2] S. Albeverio, R. Hoeg-Krohn and L. Streit, Energy forms, Hamiltonians and distorted Brownian paths. J. Math. Phys. 18 (1977) 907-917. | MR | Zbl

[3] B. Altshuler, H. Krovi and J. Roland, Anderson localization casts clouds over adiabatic quantum optimization. arXiv:0912.0746v1 (2009).

[4] P. Amara, D. Hsu and J. Straub, Global minimum searches using an approximate solution of the imaginary time Schrödinger equation. J. Chem. Phys. 97 (1993) 6715-6721.

[5] A. Ambainis and O. Regev, An elementary proof of the quantum adiabatic theorem. arXiv:quant-ph/0411152 (2004).

[6] M.H.S. Amin and V. Choi. First order quantum phase transition in adiabatic quantum computation. arXiv:quant-ph/0904.1387v3 (2009).

[7] P. Anderson, Absence of diffusion in certain random lattices. Phys. Rev. 109 (1958) 1492-1505.

[8] B. Apolloni, C. Carvalho and D. De Falco, Quantum stochastic optimization. Stoc. Proc. Appl. 33 (1989) 223-244. | MR | Zbl

[9] B. Apolloni, N. Cesa-Bianchi and D. De Falco, A numerical implementation of Quantum Annealing, in Stochastic Processes, Physics and Geometry, Proceedings of the Ascona/Locarno Conference, 4-9 July 1988. Albeverio et al., Eds. World Scientific (1990), 97-111. | MR

[10] D. Battaglia, G. Santoro, L. Stella, E. Tosatti and O. Zagordi, Deterministic and stochastic quantum annealing approaches. Lecture Notes in Computer Physics 206 (2005) 171-206.

[11] E. Bernstein and U. Vazirani, Quantum complexity theory. SIAM J. Comput. 26 (1997) 1411-1473. | MR | Zbl

[12] F. Bloch, Über die Quantenmechanik der Elektronen in Kristallgittern. Z. Phys. 52 (1929) 555-600. | JFM

[13] M. Born and V. Fock, Beweis des Adiabatensatzes. Z. Phys. A 51 (1928) 165. | JFM

[14] S. Bravyi, Efficient algorithm for a quantum analogue of 2-sat. arXiV:quant-ph/0602108 (2006). | MR | Zbl

[15] H.P. Breuer and F. Petruccione, The theory of open quantum systems. Oxford University Press, New York (2002). | MR | Zbl

[16] D. De Falco and D. Tamascelli, Speed and entropy of an interacting continuous time quantum walk. J. Phys. A 39 (2006) 5873-5895. | MR | Zbl

[17] D. De Falco and D. Tamascelli, Quantum annealing and the Schrödinger-Langevin-Kostin equation. Phys. Rev. A 79 (2009) 012315.

[18] D. De Falco, E. Pertoso and D. Tamascelli, Dissipative quantum annealing, in Proceedings of the 29th Conference on Quantum Probability and Related Topics. World Scientific (2009) (in press). | MR | Zbl

[19] D. Deutsch, Quantum theory, the Church-Turing principle and the universal quantum computer. Proc. R. Soc. Lond. A 400 (1985) 97-117. | MR | Zbl

[20] S. Eleuterio and S. Vilela Mendes, Stochastic ground-state processes. Phys. Rev. B 50 (1994) 5035-5040.

[21] E. Farhi et al., Quantum computation by adiabatic evolution. arXiv:quant-ph/0001106v1 (2000).

[22] E. Farhi et al., A quantum adiabatic evolution algorithm applied to random instances of an NP-Complete problem. Science (2001) 292. | MR | Zbl

[23] R. Feynman, Simulating physics with computers. Int. J. Theor. Phys. 21 (1982) 467-488. | MR

[24] R.P. Feynman, Space-time approach to non-relativistic quantum mechanics. Rev. Mod. Phys. 20 (1948) 367-387. | MR

[25] G. Ford, M. Kac and P. Mazur, Statistical mechanics of assemblies of coupled oscillators. J. Math. Phys. 6 (1965) 504-515. | MR | Zbl

[26] T. Gregor and R. Car, Minimization of the potential energy surface of Lennard-Jones clusters by quantum optimization. Chem. Rev. Lett. 412 (2005) 125-130.

[27] J.J. Griffin and K.-K. Kan, Colliding heavy ions: Nuclei as dynamical fluids. Rev. Mod. Phys. 48 (1976) 467-477.

[28] L. Grover, A fast quantum-mechanical algorithm for database search, in Proc. 28th Annual ACM Symposium on the Theory of Computing. ACM, New York (1996). | MR | Zbl

[29] L. Grover, From Schrödinger equation to the quantum search algorithm. Am. J. Phys. 69 (2001) 769-777.

[30] T. Hogg, Adiabatic quantum computing for random satisfiability problems. Phys. Rev. A 67 (2003) 022314.

[31] D.S. Johnson, C.R. Aragon, L.A. Mcgeoch and C. Shevon, Optimization by simulated annealing: An experimental evaluation; part i, graph partitioning. Oper. Res. 37 (1989) 865-892. | Zbl

[32] G. Jona-Lasinio, F. Martinelli and E. Scoppola, New approach to the semiclassical limit of quantum mechanics. i. Multiple tunnelling in one dimension. Commun. Math. Phys. 80 (1981) 223-254. | MR | Zbl

[33] M. Kac, On distributions of certain Wiener functionals. Trans. Am. Math. Soc. (1949) 1-13. | MR | Zbl

[34] J. Kempe, A. Kitaev and O. Regev, The complexity of the local Hamiltonian problem. SIAM J. Comput. 35 (2006) 1070-1097. | MR | Zbl

[35] S. Kirkpatrik, C.D. Gelatt Jr. and M.P. Vecchi, Optimization by simulated annealing. Science 220 (1983) 671-680. | MR | Zbl

[36] M. Kostin, On the Schrödinger-Langevin equation. J. Chem. Phys. 57 (1972) 3589-3591.

[37] M. Kostin, Friction and dissipative phenomena in quantum mechanics. J. Statist. Phys. 12 (1975) 145-151.

[38] K. Kurihara, S. Tanaka and S. Miyashita, Quantum annealing for clustering. arXiv:quant-ph/09053527v2 (2009).

[39] C. Laumann et al., On product, generic and random generic quantum satisfiability. arXiv:quant-ph/0910.2058v1 (2009).

[40] C. Laumann et al., Phase transitions and random quantum satisfiability. arXiv:quant-ph/0903.1904v1 (2009).

[41] A. Messiah, Quantum Mechanics. John Wiley and Sons (1958). | Zbl

[42] S. Morita and H. Nishimori, Mathematical foundations of quantum annealing. J. Math. Phys. 49 (2008) 125210. | MR | Zbl

[43] C. Papadimitriou and K. Steiglitz, Combinatorial optimization: algorithms and complexity. Dover New York (1998). | MR | Zbl

[44] B. Reichardt, The quantum adiabatic optimization algorithm and local minima, in Proc. 36th STOC (2004) 502. | MR | Zbl

[45] G. Santoro and E. Tosatti, Optimization using quantum mechanics: quantum annealing through adiabatic evolution. J. Phys. A 39 (2006) R393-R431. | MR | Zbl

[46] G. Santoro and E. Tosatti, Optimization using quantum mechanics: quantum annealing through adiabatic evolution. J. Phys. A: Math. Theor. 41 (2008) 209801. | MR | Zbl

[47] P.W. Shor, Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26 (1997) 1484. | MR | Zbl

[48] L. Stella, G. Santoro and E. Tosatti, Optimization by quantum annealing: Lessons from simple cases. Phys. Rev. B 72 (2005) 014303.

[49] W. Van Dam, M. Mosca and U. Vazirani, How powerful is adiabatic quantum computation. Proc. FOCS '01 (2001). | MR

[50] J. Watrous, Succint quantum proofs for properties of finite groups, in Proc. IEEE FOCS (2000) 537-546. | MR

[51] A.P. Young, S. Knysh and V.N. Smelyanskiy. Size dependence of the minimum excitation gap in the quantum adiabatic algorithm. Phys. Rev. Lett. 101 (2008) 170503.

[52] J. Yuen-Zhou et al., Time-dependent density functional theory for open quantum systems with unitary propagation. arXiv:cond-mat.mtrl-sci/0902.4505v3 (2009).

[53] C. Zener, A theory of the electrical breakdown of solid dielectrics. Proc. R. Soc. Lond. A 145 (1934) 523-529. | Zbl

[54] M. Žnidari and M. Horvat, Exponential complexity of an adiabatic algorithm for an np-complete problem. Phys. Rev. A 73 (2006) 022329.

  • Chen, Chia-An; Chien, Chen-Fu; Kuo, Hsuan-An Hybrid quantum annealing genetic algorithm with auxiliary resource dispatching for TFT-LCD array photolithography scheduling and an empirical study, Computers Industrial Engineering, Volume 203 (2025), p. 110989 | DOI:10.1016/j.cie.2025.110989
  • Salloum, Hadi; Sabbagh, Kamil; Savchuk, Vladislav; Lukin, Ruslan; Orabi, Osama; Isangulov, Marat; Mazzara, Manuel Performance of Quantum Annealing Machine Learning Classification Models on ADMET Datasets, IEEE Access, Volume 13 (2025), p. 16263 | DOI:10.1109/access.2025.3531391
  • Chen, Jingyang; Yu, Zhiping; Zhu, Xiaolei A 28 nm Ising machine with adaptive majority voter and reduction algorithms for high-performance combinatorial optimization, Microelectronics Journal, Volume 159 (2025), p. 106621 | DOI:10.1016/j.mejo.2025.106621
  • Rathore, Omer; Basden, Alastair; Chancellor, Nicholas; Kusumaatmaja, Halim Load balancing for high performance computing using quantum annealing, Physical Review Research, Volume 7 (2025) no. 1 | DOI:10.1103/physrevresearch.7.013067
  • Seok, Jinwuk; Cho, Chang Sik Numerical analysis of quantization‐based optimization, ETRI Journal, Volume 46 (2024) no. 3, p. 367 | DOI:10.4218/etrij.2023-0083
  • e Oliveira, Hime A. Homotopic quantum fuzzy adaptive simulated annealing [HQF ASA], Information Sciences, Volume 669 (2024), p. 120529 | DOI:10.1016/j.ins.2024.120529
  • Mazumder, Arul Rhik; Sen, Anuvab; Sen, Udayon Benchmarking Metaheuristic-Integrated QAOA Against Quantum Annealing, Intelligent Computing, Volume 1018 (2024), p. 651 | DOI:10.1007/978-3-031-62269-4_42
  • Xie, Ningyi; Lee, Xinwei; Cai, Dongsheng; Saito, Yoshiyuki; Asai, Nobuyoshi; Lau, Hoong Chuin A feasibility-preserved quantum approximate Solver for the capacitated vehicle routing problem, Quantum Information Processing, Volume 23 (2024) no. 8, p. 24 (Id/No 291) | DOI:10.1007/s11128-024-04497-5 | Zbl:7898031
  • Montañez-Barrera, J A; Willsch, Dennis; Maldonado-Romo, A; Michielsen, Kristel Unbalanced penalization: a new approach to encode inequality constraints of combinatorial problems for quantum optimization algorithms, Quantum Science and Technology, Volume 9 (2024) no. 2, p. 025022 | DOI:10.1088/2058-9565/ad35e4
  • Yang, Haifeng; Li, Hongrui; Jiang, Jiasheng Predictive modeling of compressive strength of geopolymer concrete before and after high temperature applying machine learning algorithms, Structural Concrete (2024) | DOI:10.1002/suco.202400552
  • Liu, Hualong; Tang, Wenyuan Quantum computing for power systems: Tutorial, review, challenges, and prospects, Electric Power Systems Research, Volume 223 (2023), p. 109530 | DOI:10.1016/j.epsr.2023.109530
  • Varmantchaonala, Charles Moudina; Fendji, Jean Louis Kedieng Ebongue; Njafa, Jean Pierre Tchapet; Atemkeng, Marcellin Quantum hybrid algorithm for solving SAT problem, Engineering Applications of Artificial Intelligence, Volume 121 (2023), p. 106058 | DOI:10.1016/j.engappai.2023.106058
  • Casper, W. Riley; Grimes, Taylor Battleship, tomography and quantum annealing, European Journal of Applied Mathematics, Volume 34 (2023) no. 4, pp. 758-773 | DOI:10.1017/s0956792522000377 | Zbl:7930489
  • Prajapati, Jigna B.; Paliwal, Himanshu; Prajapati, Bhupendra G.; Saikia, Surovi; Pandey, Rajiv Quantum Machine Learning in Prediction of Breast Cancer, Quantum Computing: A Shift from Bits to Qubits, Volume 1085 (2023), p. 351 | DOI:10.1007/978-981-19-9530-9_19
  • Kodai, Shiba; Sugiyama, Ryo; Yamaguchi, Koichi; Sogabe, Tomah; Ulloa, Sergio Quantum Dot Phase Transition Simulation with Hybrid Quantum Annealing via Metropolis-Adjusted Stochastic Gradient Langevin Dynamics, Advances in Condensed Matter Physics, Volume 2022 (2022), p. 1 | DOI:10.1155/2022/9711407
  • Du, Yao; Miao, Shuxiao; Tong, Zitian; Lemieux, Victoria; Wang, Zehua Blockchain-Empowered Mobile Edge Intelligence, Machine Learning and Secure Data Sharing, Blockchain Potential in AI (2022) | DOI:10.5772/intechopen.96618
  • Singh, Abhishek Kumar; Jamieson, Kyle; McMahon, Peter L.; Venturelli, Davide, GLOBECOM 2022 - 2022 IEEE Global Communications Conference (2022), p. 2517 | DOI:10.1109/globecom48099.2022.10001657
  • Martins, Ricardo; Lourenço, Nuno; Póvoa, Ricardo; Horta, Nuno Shortening the gap between pre- and post-layout analog IC performance by reducing the LDE-induced variations with multi-objective simulated quantum annealing, Engineering Applications of Artificial Intelligence, Volume 98 (2021), p. 104102 | DOI:10.1016/j.engappai.2020.104102
  • Copenhaver, Justin; Wasserman, Adam; Wehefritz-Kaufmann, Birgit Using quantum annealers to calculate ground state properties of molecules, The Journal of Chemical Physics, Volume 154 (2021) no. 3 | DOI:10.1063/5.0030397
  • Kawashima, Ichiro; Morie, Takashi; Tamukoh, Hakaru FPGA Implementation of Hardware-Oriented Chaotic Boltzmann Machines, IEEE Access, Volume 8 (2020), p. 204360 | DOI:10.1109/access.2020.3036882
  • Pang, S. Y.; Muniandy, S. V.; Kamali, M. Z. M. Effect of fluctuation in the coupling strength on critical dynamics of 1D transverse field quantum Ising model, International Journal of Theoretical Physics, Volume 59 (2020) no. 1, pp. 250-260 | DOI:10.1007/s10773-019-04320-3 | Zbl:1434.82050
  • Silva, Carla; Aguiar, Ana; Lima, Priscila M. V.; Dutra, Inês Mapping graph coloring to quantum annealing, Quantum Machine Intelligence, Volume 2 (2020) no. 2 | DOI:10.1007/s42484-020-00028-4
  • Nikouei, Reihaneh; Rasouli, Nayereh; Tahmasebi, Shirin; Zolfi, Somayeh; Faragardi, Hamid; Fotouhi, Hossein A Quantum-Annealing-Based Approach to Optimize the Deployment Cost of a Multi-Sink Multi-Controller WSN, Procedia Computer Science, Volume 155 (2019), p. 250 | DOI:10.1016/j.procs.2019.08.036
  • Miyahara, Hideyuki; Tsumura, Koji; Sughiyama, Yuki Deterministic quantum annealing expectation-maximization algorithm, Journal of Statistical Mechanics: Theory and Experiment, Volume 2017 (2017) no. 11, p. 22 (Id/No 113404) | DOI:10.1088/1742-5468/aa967e | Zbl:1456.68159
  • Obuchi, Tomoyuki; Suzuki, Sei; Takahashi, Kazutaka Complex semiclassical analysis of the Loschmidt amplitude and dynamical quantum phase transitions, Physical Review B, Volume 95 (2017) no. 17 | DOI:10.1103/physrevb.95.174305
  • Miyahara, Hideyuki; Tsumura, Koji, 2016 American Control Conference (ACC) (2016), p. 4779 | DOI:10.1109/acc.2016.7526110
  • Miyahara, Hideyuki; Tsumura, Koji; Sughiyama, Yuki, 2016 IEEE 55th Conference on Decision and Control (CDC) (2016), p. 4674 | DOI:10.1109/cdc.2016.7798981
  • Rastegin, Alexey E. Further results on generalized conditional entropies, RAIRO. Theoretical Informatics and Applications, Volume 49 (2015) no. 1, pp. 67-92 | DOI:10.1051/ita/2014029 | Zbl:1395.94219
  • Adiabatic Quantum Computation and Quantum Annealing, 2014 | DOI:10.1007/978-3-031-02518-1

Cité par 29 documents. Sources : Crossref, zbMATH