Quantum Coherent Spaces were introduced by Girard as a quantum framework where to interpret the exponential-free fragment of Linear Logic. Aim of this paper is to extend Girard's interpretation to a subsystem of linear logic with bounded exponentials. We provide deduction rules for the bounded exponentials and, correspondingly, we introduce the novel notion of bounded exponentials of Quantum Coherent Spaces. We show that the latter provide a categorical model of our system. In order to do that, we first study properties of the category of Quantum Coherent Spaces.
Mots clés : quantum coherent spaces, linear logic, bounded exponentials, denotational semantics, normalization
@article{ITA_2010__44_4_419_0, author = {Baratella, Stefano}, title = {Quantum coherent spaces and linear logic}, journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications}, pages = {419--441}, publisher = {EDP-Sciences}, volume = {44}, number = {4}, year = {2010}, doi = {10.1051/ita/2010021}, mrnumber = {2775405}, language = {en}, url = {http://www.numdam.org/articles/10.1051/ita/2010021/} }
TY - JOUR AU - Baratella, Stefano TI - Quantum coherent spaces and linear logic JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications PY - 2010 SP - 419 EP - 441 VL - 44 IS - 4 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/ita/2010021/ DO - 10.1051/ita/2010021 LA - en ID - ITA_2010__44_4_419_0 ER -
%0 Journal Article %A Baratella, Stefano %T Quantum coherent spaces and linear logic %J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications %D 2010 %P 419-441 %V 44 %N 4 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/ita/2010021/ %R 10.1051/ita/2010021 %G en %F ITA_2010__44_4_419_0
Baratella, Stefano. Quantum coherent spaces and linear logic. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 44 (2010) no. 4, pp. 419-441. doi : 10.1051/ita/2010021. http://www.numdam.org/articles/10.1051/ita/2010021/
[1] Games and full completeness for multiplicative linear logic. J. Symb. Log. 2 (1994) 543-574. | Zbl
and ,[2] The symmetric tensor product of a direct sum of locally convex spaces. Stud. Math. 129 (1998) 285-295. | Zbl
and ,[3] -autonomous categories and linear logic. Math. Struct. Comp. Sci. 1 (1991) 159-178. | Zbl
,[4] Proof theory for full intuitionistic linear logic, bilinear logic and MIX categories. Theory and Applications of categories 3 (1997) 85-131. | Zbl
and ,[5] Cours de logique, Vers l'imperfection. Hermann, Paris (2007).
, ,[6] Truth, modality and intersubjectivity. Math. Struct. Comp. Sci. 17 (2007) 1153-1167. | Zbl
,[7] Bounded linear logic: a modular approach to polynomial-time computability. Theoret. Comput. Sci. 97 (1992) 1-66. | Zbl
, and .[8] Categories for the Working Mathematician. 2nd edition Springer, Berlin (1998). | Zbl
,[9] An Introduction to Banach Space Theory. Springer, Berlin (1998). | Zbl
,[10] Categorical semantics of linear logic, available at http://www.pps.jussieu.fr/ mellies/.
,[11] Multiplexor categories and models of Soft Linear Logic. Logical foundations of computer science, Lecture Notes in Comput. Sci. 4514, Springer, Berlin (2007) 472-485. | Zbl
,[12] Towards a semantics for higher-order quantum computation. Proc. QPL (2004) 127-143.
,[13] Linear Operators in Hilbert Spaces. Springer, Berlin (1980). | Zbl
,Cité par Sources :