Function operators spanning the arithmetical and the polynomial hierarchy
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 44 (2010) no. 3, pp. 379-418.

A modified version of the classical µ-operator as well as the first value operator and the operator of inverting unary functions, applied in combination with the composition of functions and starting from the primitive recursive functions, generate all arithmetically representable functions. Moreover, the nesting levels of these operators are closely related to the stratification of the arithmetical hierarchy. The same is shown for some further function operators known from computability and complexity theory. The close relationships between nesting levels of operators and the stratification of the hierarchy also hold for suitable restrictions of the operators with respect to the polynomial hierarchy if one starts with the polynomial-time computable functions. It follows that questions around P vs. NP and NP vs. coNP can equivalently be expressed by closure properties of function classes under these operators. The polytime version of the first value operator can be used to establish hierarchies between certain consecutive levels within the polynomial hierarchy of functions, which are related to generalizations of the Boolean hierarchies over the classes Σ k p .

DOI : 10.1051/ita/2010020
Classification : 68Q15, 03D15, 03D55
Mots clés : arithmetical hierarchy, polynomial hierarchy, boolean hierarchy, P versus NP, NP versus conp, first value operator, minimalization, inversion of functions
@article{ITA_2010__44_3_379_0,
     author = {Hemmerling, Armin},
     title = {Function operators spanning the arithmetical and the polynomial hierarchy},
     journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications},
     pages = {379--418},
     publisher = {EDP-Sciences},
     volume = {44},
     number = {3},
     year = {2010},
     doi = {10.1051/ita/2010020},
     mrnumber = {2761525},
     zbl = {1213.68294},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/ita/2010020/}
}
TY  - JOUR
AU  - Hemmerling, Armin
TI  - Function operators spanning the arithmetical and the polynomial hierarchy
JO  - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY  - 2010
SP  - 379
EP  - 418
VL  - 44
IS  - 3
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/ita/2010020/
DO  - 10.1051/ita/2010020
LA  - en
ID  - ITA_2010__44_3_379_0
ER  - 
%0 Journal Article
%A Hemmerling, Armin
%T Function operators spanning the arithmetical and the polynomial hierarchy
%J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
%D 2010
%P 379-418
%V 44
%N 3
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/ita/2010020/
%R 10.1051/ita/2010020
%G en
%F ITA_2010__44_3_379_0
Hemmerling, Armin. Function operators spanning the arithmetical and the polynomial hierarchy. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 44 (2010) no. 3, pp. 379-418. doi : 10.1051/ita/2010020. http://www.numdam.org/articles/10.1051/ita/2010020/

[1] S. Buss and L. Hay, On truth-table reducibility to SAT. Inf. Comput. 91 (1991) 86-102. | Zbl

[2] J.L. Balcazar, J. Diaz and J. Gabarro, Structural complexity I and II. Springer-Verlag, Berlin (1990). | Zbl

[3] S.J. Bellantoni and K.-H. Niggl, Ranking primitive recursions: the low Grzegorczyk classes revised. SIAM Journal on Computing 29 (1999) 401-415. | Zbl

[4] J.-Y. Cai, T. Gundermann, J. Hartmanis, L. Hemachandra, V. Sawelson, K. Wagner and G. Wechsung, The Boolean hierarchy I: structural properties. SIAM Journal on Computing 17 (1988) 1232-1252. | Zbl

[5] J.-Y. Cai, T. Gundermann, J. Hartmanis, L. Hemachandra, V. Sawelson, K. Wagner and G. Wechsung, The Boolean hierarchy II: applications. SIAM Journal on Computing 18 (1989) 95-111. | Zbl

[6] S.B. Cooper, Computability theory. Chapman & Hall/CRC, Boca Raton (2004). | Zbl

[7] D.-Z. Du and K.-I. Ko, Theory of computational complexity. Wiley-Interscience, New York (2000). | Zbl

[8] R.L. Epstein, R. Haas and R.L. Kramer, Hierarchies of sets and degrees below 0'. In: Logic Year (1979/80), Univ. of Connecticut, edited by M. Lerman, J.H. Schmerl, R.I. Soare. LN in Math 859. Springer Verlag, 32-48. | Zbl

[9] Y.L. Ershov, A hierarchy of sets. I; II; III. Algebra i Logica 7 (1968) no. 1, 47-74; no. 4, 15-47; 9 (1970), no. 1, 34-51 (English translation by Plenum P.C.). | Zbl

[10] M.R. Garey and D.S. Johnson, Computers and intractability - a guide to the theory of NP-completeness. W.H. Freeman, San Francisco (1979). | Zbl

[11] F. Hausdorff, Grundzüge der Mengenlehre. W. de Gruyter & Co., Berlin and Leipzig (1914); Reprint: Chelsea P.C., New York (1949). | JFM

[12] A. Hemmerling, The Hausdorff-Ershov hierarchy in Euclidean spaces. Arch. Math. Logic 45 (2006) 323-350. | Zbl

[13] A. Hemmerling, Hierarchies of function classes defined by the first-value operator. RAIRO - Theor. Inf. Appl. 42 (2008) 253-270. Extended abstract in: Proc. of CCA'2004. Electronic Notes in Theoretical Computer Science 120 (2005) 59-72. | Numdam | Zbl

[14] J. Krajicek, Bounded arithmetic, propositional logic, and complexity theory. Cambridge Univ. Press (1995). | Zbl

[15] M.W. Krentel, The complexity of optimization problems. J. Comput. Syst. Sci. 36 (1988) 490-509. | Zbl

[16] A.I. Malcev, Algorithmen und rekursive Funktionen. Akademie-Verlag, Berlin (1974). | Zbl

[17] P. Odifreddi, Classical recursion theory. North-Holland P.C., Amsterdam (1989). | Zbl

[18] C.H. Papadimitriou, Computational complexity. Addison Wesley P.C., Reading (1994). | Zbl

[19] C. Parsons, Hierarchies of primitive recursive functions. Zeitschr. f. Math. Logik u. Grundl. d. Math. 14 (1968) 357-376. | Zbl

[20] J. Robinson, General recursive functions. Proc. Am. Math. Soc. 72 (1950) 703-718. | Zbl

[21] H. Rogers Jr, Theory of recursive functions and effective computability. McGraw-Hill, New York (1967). | Zbl

[22] H.E. Rose, Subrecursion: functions and hierarchies. Clarendon Press, Oxford (1984). | Zbl

[23] J. Rothe, Complexity theory and cryptology. Springer-Verlag, Berlin (2005). | Zbl

[24] H. Schwichtenberg, Rekursionszahlen und Grzegorczyk-Hierarchie. Arch. Math. Logic 12 (1969) 85-97. | Zbl

[25] A.L. Selman, A survey of one-way functions in complexity theory. Math. Syst. Theory 25 (1992) 203-221. | Zbl

[26] A. Selman, A taxonomy of complexity classes of functions. J. Comput. Syst. Sci. 48 (1994) 357-381. | Zbl

[27] J.R. Shoenfield, On degrees of unsolvability. Ann. Math. 69 (1959) 644-653. | Zbl

[28] R.I. Soare, Recursively enumerable sets and degrees. Springer-Verlag, Berlin (1987). | Zbl

[29] R.I. Soare, Computability and recursion. Bulletin of symbolic Logic 2 (1996) 284-321. | Zbl

[30] R.I. Soare, Computability theory and applications. Springer-Verlag, Berlin, forthcoming.

[31] K.W. Wagner, Bounded query classes. SIAM Journal on Computing 19 (1990) 833-846. | Zbl

[32] G. Wechsung, Vorlesungen zur Komplexitätstheorie. B.G. Teubner, Stuttgart (2000). | Zbl

[33] K. Weihrauch, Computability. Springer-Verlag, Berlin (1987). | Zbl

Cité par Sources :