RAIRO-Theor. Inf. Appl. 43 (2009) 779-790 Available online at:
DOI: 10.1051/ita/2009018 www.rairo-ita.org

A PERFECT HASHING INCREMENTAL SCHEME
FOR UNRANKED TREES USING PSEUDO-MINIMAL
AUTOMATA

RAFAEL C. CARRASCO! AND JAN DACIUK?

Abstract. We describe a technique that maps unranked trees to ar-
bitrary hash codes using a bottom-up deterministic tree automaton
(DTA). In contrast to other hashing techniques based on automata, our
procedure builds a pseudo-minimal DTA for this purpose. A pseudo-
minimal automaton may be larger than the minimal one accepting the
same language but, in turn, it contains proper elements (states or tran-
sitions which are unique) for every input accepted by the automaton.
Therefore, pseudo-minimal DTA are a suitable structure to implement
stable hashing schemes, that is, schemes where the output for every
key can be determined prior to the automaton construction. We pro-
vide incremental procedures to build the pseudo-minimal DTA and the
mapping that associates an integer value to every transition that will
be used to compute the hash codes. This incremental construction al-
lows for the incorporation of new trees and their hash codes without
the need to rebuild the whole DTA from scratch.

Mathematics Subject Classification. 37E25.

1. INTRODUCTION

In many applications, there is a need to associate every piece of data with an
integer which is in turn used as an identifier to access efficiently related information
stored in another structure. This number or hash code is computed from a part
of the data (often called key) that holds enough information to identify the whole

Keywords and phrases. Perfect hashing, deterministic tree automata, pseudo-minimal au-
tomata, incremental automata.

I Departamento de Lenguajes y Sistemas Informéaticos, Universidad de Alicante,
03071 Alicante, Spain; carrasco@dlsi.ua.es

2 Knowledge Engineering Department, Gdarisk University of Technology, Poland;
jandac@eti.pg.gda.pl

Article published by EDP Sciences © EDP Sciences 2009

http://dx.doi.org/10.1051/ita/2009018
http://www.rairo-ita.org
http://www.edpsciences.org

780 R.C. CARRASCO AND J. DACIUK

piece. As hashing [10] transforms the key into an integer in a limited range, the
domain of the key is often orders of magnitude larger than the allowed range and
different keys may occasionally be mapped to the same hash code. Such situation
is called a conflict or collision. However, for some static sets of keys [24], there
exist collision-free hashing schemes. A function that implements such conflict-free
mapping is called a perfect hash function. If, additionally, the function maps n
keys into a consecutive range of n integers (e.g., from 1 to n), it is called a minimal
perfect hash function.

In particular, if keys are strings, an acyclic deterministic finite-state automa-
ton (or acyclic DFA for short) can be used to implement minimal perfect hash-
ing [17,21]. Using minimal DFA for this purpose provides both a very compact
representation for the keys, and a very fast way to access the data; however, hash
codes cannot be modified arbitrarily and they change every time strings are in-
serted or removed from the set of keys.

In contrast, pseudo-minimal automata — first introduced by Revuz [21] as a side-
effect of a failed attempt at incremental construction of minimal acyclic
DFA [2,13,22,25] — can implement an arbitrary mapping from strings to integers
(not limited, for instance, to the mapping implied by the lexicographical order of
key strings). This potential was discovered by Maurel [19] and has been applied
to dynamic perfect hashing [14], where new keys may be continually added (and
deleted) while the original mapping is preserved, that is, renumbering of keys is
not allowed.

A traditional approach to build a minimal automaton recognizing a set of el-
ements is to use a standard method to construct a non-minimal automaton, and
then minimize it. The disadvantage of this procedure is that the size of the in-
termediate non-minimal automaton can be large, as well as the space and time
needed to compute the minimized automaton. To alleviate these problems, incre-
mental methods have been developed so that one element is added to the language
of the minimal automaton, and then the automaton is minimized again. Since the
addition modifies only a small fraction of the automaton, the minimization can be
local, acting only on those parts that have changed. The incremental construction
of minimal DFA has been addressed in a number of papers [1,5,8,11,13,22]. Pro-
cedures for the incremental construction of pseudo-minimal DFA have also been
described before [15].

Trees, which are ubiquitous in computer science theory and applications, are
another common source of keys for hashing. For instance, they are often used in
the implementation of indexes in databases [3]. They also appear as the result of
parsing code and whenever structured information, such as that contained in XML
documents and in configuration files, is processed. In natural language processing,
trees are used to store annotated corpora [18] and to represent syntactic constraints
or connectivity of words in grammars [16].

Trees can be processed by deterministic tree automata. Every deterministic tree
automaton (DTA) recognizes a tree language with a single-pass procedure, i.e.,
no backtracking is needed. In contrast to top-down (also called root-to-frontier)
deterministic tree automata, bottom-up (also called frontier-to-root) deterministic

INCREMENTAL SCHEME USING PSEUDO-MINIMAL AUTOMATA 781

tree automata can recognize all finite tree languages [9] and, thus, they are more
suitable for the implementation of perfect hashing on trees.

In this paper, we show how pseudo-minimal DTA can be used to map trees to
arbitrary hash codes. Relevant definitions are presented in Section 2 and pseudo-
minimal DTA are introduced in Section 3. Section 4 shows how proper transitions
in a pseudo-minimal DTA can be identified and how they can be used to associate a
unique hash code for every tree in the recognized language. Incremental procedures
to build the pseudo-minimal DTA and the associated hash codes are described in
Section 5. Finally, conclusions are presented in Section 6.

2. BOTTOM-UP DETERMINISTIC TREE AUTOMATA

For every finite alphabet X, the language of unranked ordered trees Tx, can be
defined as follows:

1. Each symbol 0 € ¥ is a tree in T¥.
2. Every t = o(ty -+ - t;), such that 0 € ¥, m > 0 and t1,..., ¢, are in T,
is also a tree in T%.
The valence of a tree o(t; ...t,) is m and the valence of o € X is 0.
Any subset of Ty, is called a tree language. In particular, the language of subtrees
of t € Ty, is defined as:

{o} ift=0€X
sub(t) = { (YU sub(ty) ift=o(ty - t,) € Tx — . (2.1)

The number of occurrences of a subtree u in a tree ¢ is given by

1 ift=u
matches(u,t) = ¢ 0 ifteXAt#u (2.2)
S matches(sg,t) if t =o(s1 - Sp) # u.

A finite-state tree automaton [9] is defined as A = (Q, X, A, F), where @ is a finite
set of states, X is a finite set of symbols called the alphabet, A C Ufnozo ¥ x Qmtt
is a finite set of transitions, and F' C @) is a set of acceptance states. This definition
differs from that of automata operating on strings in two remarkable aspects: first,
there is no start state and, second, a transition is a relation between an alphabet
symbol and an arbitrary number of states (not necessarily two). A finite-state tree
automaton is bottom-up deterministic (and, in the following, will be simply denoted
as DTA) if for all m > 0 and for all (0,41, ...,9,) € X x Q™, there is at most one
Jj € Q such that (o,41,...,im,J) € A. For every transition 7 = (0,41,...,%m,J),
the states i1,...,1,, are the source or input states of T and state j its target or
output.

For every DTA, one can define a collection of transition functions 9, : X xQ™ —
Q@ as follows:

)) i3 EQ:(0yi1,.. i) €A
5m(07117"'7zm){i Otth’Wé?e (! j) (23)

782 R.C. CARRASCO AND J. DACIUK

where 1€ Q — F' is the special absorption state, a non-acceptance state which is
input or output of no transition in A.

The result of the operation of the DTA A on a tree t is denoted as A(t) and
defined recursively:

_ [do(o) ift=0€eX
A(t) —{ 5;(0,A(t1),...,A(tm)) ift =0t ty) €Te— 2. (2.4)

The language of wvisited states when A operates on t is visited(A,t) = {A(s) : s €
sub(t)}; the language accepted at state q is the set of trees such that A(t) returns g,

Lalg) ={teTs: Alt) = q}; (2.5)

and the language accepted by the automaton A is the sum of the languages accepted
at its acceptance states:
L(A) = | La(g). (2.6)
qeF
A state ¢ such that £4(q) = 0 is unreachable. Unreachable states can be safely
removed from the automaton® and, in the following, all DTA will be assumed to
contain no unreachable states, that is, [£4(g)| > 0 for all ¢ € Q.

The languages £ 4(q) play the analogous role of the left languages in a DFA [23]:
in both cases, ¢ is the output obtained when the automaton operates on the trees
or strings in the language and, for different states p and ¢, the languages L4 (p)
and L4 (q) are disjoint. It is also possible to define the DTA analogue of the right
languages in a DFA, R 4(q), as follows:

Ralq) ={teTT :3s€ La(g):t-s€ L(A)} (2.7)

where Tg C Txuqey is the language of trees ¢ such that matches(®,t) = 1, and t-s
represents the tree in Ty that is obtained after replacing the subtree ® with the
subtree s%. A state ¢ such that R4(q) = 0 is useless. In particular, all unreachable
states are useless.

The fanin set of a state ¢ € @) is the subset of transitions in A with output ¢:

fanin(q) = {(o,41,...,im,J) € A:j=q} (2.8)

and its fanout set contains one element of the type (7, k) for every occurrence of
q as input state (in transition 7 at position k) in A:

fanout(q) = {(0, i1, ... ,im,J, k) EAXN:0 <k <mAi=q}. (2.9)

L In a DTA without unreachable states, the absorption state remains in Q, as L4 (L) = Tx.

2 The symbol ® marks the leaf (a valence-0 subtree) where subtree attachment takes place and
the replacement of this “pointed border node” [20] with a subtree can be seen as a generalization
of string concatenation.

INCREMENTAL SCHEME USING PSEUDO-MINIMAL AUTOMATA 783

3. PSEUDO-MINIMAL TREE AUTOMATA

A DTA is minimal if it is smaller (when comparing its number of states) than
any other DTA accepting the same language [9]. There is only one minimal DTA
(up to isomorphisms) accepting the language L(A) and it can be obtained by
merging pairs of equivalent states in A [6,9]. Two states p and ¢ in A are equivalent

(p=q)if
Ra(p) = Ralq).

This equivalence relation is a congruence [4], that is, all pairs of equivalent states
(p, q) consist of two acceptance or two non-acceptance states which are interchange-
able as input states at any transition:

l.peF < qeF and
2. for all m > 0, for all k < m and for all (0,41,...,im) € X X Q™

6m(0—;7:1a' "7ik717paik+1a' 7Zm) = 6m(0—;7:1a' "7ik717qaik+1;- 7Zm) (31)

In a minimal DTA A, every equivalence class contains a single state, i.e., all
pairs of states are inequivalent; moreover, the languages R 4, satisfy |[Ra,... (¢)| >
0 for all states ¢ #L.

We will calla DTA A = (Q, X, A, F) proper if) contains no unreachable states
and for all ¢ € Q

min

1La(g)l <1V [Ra(g) < 1. (3.2)

As will be seen later, a proper DTA A has the useful property that every tree ¢
accepted by A can be associated with at least one proper element in the DTA (the
element being a transition in A or an acceptance state in F'). Each proper element
is associated to a single tree in L(A) and can be used to store related information,
e.g., an arbitrary number to implement perfect hashing.

A proper DTA must be acyclic in the following sense: A(t) = A(s) and
s € sub(t) implies s =t or A(t) =L. This can be easily proved by reductio ad ab-
surdum. Indeed, if there are t and s € sub(t) such that s # t and A(t) = A(s) = g,
then [£4(q)| > 1 as it contains, at least, two different trees (s and t). Furthermore,
there exists at least one u € T such that ¢t = u - s (with u # ®) and, then, for all
v € Ra(q) (which is empty only if ¢ =L1), v-u # v is also in Ra(q). Therefore, A
cannot be proper because |R(q)| > 1 and |£4(q)| > 1 simultaneously.

As a consequence, trees in the language L(A) accepted by a proper DTA cannot
be deeper than |Q| — 1 and, thus, L(A) is finite. It is also possible to define a
topological order for the states in A, so that p < ¢ if there exist ¢t € L(A) and
s € sub(t) such that A(s) =p and A(t) = q.

A proper DTA A is pseudo-minimal if it is smaller than any other proper DTA
accepting L(A). For every proper DTA A there is a unique (up to isomorphisms)
pseudo-minimal automaton accepting L(A) and it can be obtained by merging
pairs of pseudo-equivalentstates in A. Two states p and ¢ in a proper DTA are

784 R.C. CARRASCO AND J. DACIUK

pseudo-equivalent (p ~ q) if they are equivalent in A and R4(p) = Ra(q) contains
at most one tree, that is,

p~q<+>Ra(p) =Ralg) N [Ra(p)| <1 (3.3)

The size restriction is necessary to fulfill condition (3.2): recall that in a DTA
with no unreachable states, [£4(q)] > O for all states and, thus, merging two
states p and ¢ with identical languages R 4(¢q) would always lead to a new state
r whose language L4(r) = La(p) U L4(q) contains more than one tree. Pseudo-
equivalence is a refinement of equivalence and, thus, also a congruence and an
equivalence relation; moreover, in a pseudo-minimal automaton, there is only one
state in each equivalence class.

Of course, a pseudo-minimal DTA will in general be larger than the equivalent
minimal DTA. For instance, let A with Q@ = {q,¢,q93}, ¥ = {a,b},
A = {(a,q1),(b,q2).(a,q1,q1,43), (a,q1,92,93), (@, G2, 41, G3), (@, 42, g2, g3)} and
F = {q3}. This DTA is proper, because the languages La(q1) = {a}, La(q2) =
{b} and Ra(g3s) = {®} contain a single tree. However, the minimal equiva-
lent DTA Amin with Qmin = {qlaQS}a Amin = {(G'a(II)a (ba Q1); (aaqh(IIaQS)} and
Fmin = {g3} is not proper because both L4 _, (q1) = {a,b} and Ra,, (q1) =
{a(©a), a(®b), a(a®),
a(b®)} contain more than one tree. Indeed, ¢; and g2 are not pseudo-equivalent
in A as

Ra(q1) = Ra(g2) = {a(®a), a(®h), a(a®), a(b®)}

does not fulfill the second requirement in (3.3).

4. IDENTIFICATION OF PROPER TRANSITIONS

A state ¢ € F is said to be a proper state in the DTA A for t € L(A) if
La(g) = {t}. Thus, removing the proper state ¢ from F' just removes ¢ from L(A).
A transition (o,41,...,9m,J) € A is said to be a proper transition in the DTA A
fort € L(A)if |[Ra(j)| =1, forall k <m |La(j)| =1and t =u-0o(s1 - Sp) with
Ra(j) = {u} and La(ix) = {sx}. Clearly, removing (o, i1, ...,%m,j) from A only
removes ¢ from L(A).

Note that a proper transition for ¢ is used at most once when A operates on t.
For instance, if A = {(a,q1), (b,q1), (a,q1,q1)} then, (a,q1) is not a proper tran-
sition for a(aa), even if (a,q1) is only used when A operates on a(aa), because
Ral(q1) = {a(®a),a(a(®)}. This is a convenient feature when hash codes are de-
fined as the addition of values associated to the transitions used when the DTA
operates on the tree: if the proper transition could be used more than once, it
would require an associated fractional value in order to sum up to the predefined
integer hash code.

For the sake of simplicity, we will assume in the following that all proper DTA
contain a single acceptance state (|F| = 1). Note that any DTA A can be easily
transformed into a DTA A’ = (Q', Y, A, F’) with a single acceptance state ¢g

INCREMENTAL SCHEME USING PSEUDO-MINIMAL AUTOMATA 785

accepting L(A") = {$(t) : t € L(A)}, where $ is a super-root symbol not in ¥ (the
analogous to the end-of-string marker in DFA) and Q' = Q U {qs}, ¥’ = T U {$},
A= AU{(S,q,05) : g € F} and F' = {gs}. Clearly, Rar(gs) = {©} and
A'(8(¢)) = ¢g if and only if ¢ € L(A).

Every proper DTA A with a single accepting state gy trivially satisfies |[Ra(qs)| =
{®}. On the one hand, from its definition (2.7), ® € Ra(gy). On the other hand,
if |[L(A)| > 1, then |Ra(qs)| = 1; otherwise, there is s such that La(qr) = {s}
and, then, R 4(gy) cannot contain ¢ # © because t- s & L(A).

Under the assumption that the proper DTA A has |F| = 1, one can select a
proper transition in A for every ¢t € L(A), which can be found with a recursive
traversal of ¢. Indeed, for every t = o(s1---sm) € L(A), |[R(A(t))|=1. Tm =0
or [Ra(A(sg))| > 1 (and, thus, from Eq. (3.2), La(A(s)) = {sx}) for all k <m
then (o, A(s1),...,A(Sm), A(t)) is a proper transition for ¢; otherwise, there is
kE < m such that |[Ra(A(sk))| = 1 and one can search recursively in s; until a
proper transition for ¢ is found. In case a leaf (that is, a valence-0 subtree) o is
reached with [R4(A(0))| = 1, then (o, A(0)) is proper for t.?

For all proper DTA that contain no other useless states than the absorption
state L, the predicate |Ra(¢g)] < 1 used to identify proper transitions can be
computed, based on fanout sets (2.9), as follows:

true if fanout(q) =0
false if |fanout(q)| > 1
[Ra(q)] <1=< false if |fanout(¢)|=1A¢qg€e F
Ra(@)] <1 A
Vizk|La(in)] <1 if fanout(q) = {(o,91,...,im, . k) } Nq & F
(4.1)
where |£4(q)| <1 is also easily computed, based on fanin sets (2.8), as follows:
false if |fanin(q)| # 1
[La(g)] <1=(true if fanin(q) = {(o,q)} (4.2)

q)
Vi|La(ix) < 1] if fanin(q) = {(0, 1, -, im,q) }-

This procedure can be used to select a proper transition for every ¢t € L(A) and
to create a mapping 17 : A — N between transitions and integer values, as shown
in algorithm 1, which assigns a hash code h4(t) to every tree t € L(A) as follows:

hA(t) =

{n(a,A(sl),...,A(sm),A(t))+z;”_1hA(sk) if t=0(s1 - Sm) 43)

n(o, A(o)) if t=o0.

ADTA A=(Q,%,A, F,n) equipped with such a mapping 1 will be called a hash
DTA, or HDTA for short. If, additionally, the hash DTA satisfies (3.2), we will
call A a proper HDTA, and, if its pseudo-minimal, pseudo-minimal hash DTA.

3 In such case, the leaf o is unique in L(A) for ¢.

786 R.C. CARRASCO AND J. DACIUK

Algorithm 1 SetHash(A, o (51 8m),n)

Input: a proper HDTA A, a tree t = o(s1 -+ $pm) such that ha(t) = 0, and an
integer n > 0.
Output: a proper HDTA A’ such that ha/(u) = ha(u) for all u # t and ha/(t) =
n.
: for k=1tom do
if [Ra(A(sk))| <1 then
return SetHash(A, s;,n)
end if
end for
77(07 A(Sl)a R A(Sm)v A(t)) —n
return A

5. INCREMENTAL HASHING

Carrasco et al. [7] describe an incremental procedure to build a minimal DTA
A’ which, given a minimal DTA A and a tree ¢t ¢ L(A), accepts L(A) U {t}. This
section describes how that algorithm for the incremental construction of minimal
DTA can be adapted to manipulate pseudo-minimal HDTA and to maintain si-
multaneously the mapping 7 between transitions and integer values generating
predefined hash codes.

Algorithm 2 AddTree(A,t,n)

Input: a pseudo-minimal HDTA A, a tree t and an integer n > 0.

Output: a pseudo-minimal HDTA A’ with L(A") = L(A) U {t} and ha/ (u) =
ha(u) for all w € L(A) and ha/(t) = n.

At Split(A,t)

F' «— FU{AT(t)}

A’ « Pseudominim(AT, ¢)

return SetHash(A’,t,n)

The basic procedure to obtain a pseudo-minimal HDTA A’ which accepts a
tree t in addition to the language accepted by the input HDTA A, and assigns ¢
a predefined hash code n, is shown in Algorithm 2. First, it creates the Cartesian
product HDTA from the HDTA A and the DTA accepting {t}, that is, it builds a
HDTA Af such that L(AT) = L(A) and L4+ (Af(¢)) = {t}. Then, A is modified
to accept t by incorporating the state AT(t) to the subset of acceptance states.
Later, a local pseudo-minimization is performed where those states in AT with
transitions modified with respect to those in A are considered as candidates to be
pseudo-equivalent to other states. Finally, a proper transition for ¢ is selected and
the mapping 7’ between transitions and integers is updated.

INCREMENTAL SCHEME USING PSEUDO-MINIMAL AUTOMATA 787

Algorithm 3 Split(4,o(s1---5m))

Input: a proper HDTA A and a tree o(s1 -+ Sm).
Output: a proper HDTA AT with L(AT) = L(A), LA+ (AT(t)) = {t}, and h,t =
ha.
1: for k«—1...m do

2: A — Split(A, Sk)

3 g — Alsk)

4: end for

5. ¢ — Om(0,q1s- -y Qm)

6: if n((o,q1,-.-,¢m,q) # 0 then

7. Let (0,i1,...,1n,J, k) be the only element in fanout(q).

8: n(gaila c avaj) — 77(07 qi, - - '7qmaQ); 77(07 qi, - - '7qmaQ) —0
9: end if

10: if |fanin(q)| # 1 then

11: Add a new state p to)

12: if |fanin(g)| > 1 then

13: if ¢ € F then

14: Add p to F

15: else

16: Let (o,41,...,%n,j, k) be the only element in fanout(q).
17: A —AU{(0,81, .y ik1,Dy ks -0, J)}

18: end if

19: end if

20: A—AU {(0‘, q1,-- -, Qm;p)} - {(07 qi, .- qm, Q)}

21: end if

22: return A

The product HDTA AT is computed by function Split, shown® in Algorithm 3,
which performs a recursive traversal of the input tree ¢ and, as will be justified
later, also updates the mapping 1 (lines 6-9). This function guarantees that — see
proposition 1.3 in [7] —, for every s € sub(t), L4:(A(s)) = {s} . Therefore, all
states ¢ € QT visited when AT operates on ¢ satisfy |£ 41 (q)| = 1.

In contrast, unvisited states ¢ — see proposition 1.4 in [7] — satisfy £4:(q) C
L(q). However, if ¢ #1 is not visited when AT operates on ¢ then Af(v) = ¢
implies v ¢ sub(t) and R 4+(q) cannot contain u such that u-v =t. As L(A") =
L(A) U {t}, then R4i(q) = Ra(q). Therefore, [L4:(q)| < [La(g)| and [R4:(q)| <
|RA(q)| for all states ¢ € QT and the output HDTA AT remains proper if A is
proper.

The local pseudo-minimization is performed by function Pseudominim shown
in Algorithm 4. The only difference with respect to local minimization is that,
according to equation (3.3), it does not merge a visited state n if |Ra(n)| > 1

4 Note that this algorithm is simpler than the one presented in [7]. Here, lines 13 to 18
replace the cloning procedure specified in that algorithm because in a proper HDTA the condition
|fanin(q)| > 1 implies that |fanout(g)| < 1 and ¢ € F « fanout(q) = 0.

788 R.C. CARRASCO AND J. DACIUK

and, thus, the size of £4(n) will remain 1. In contrast, a visited state n such
that |[Ra(n)] = 1 can be merged with a pseudo-equivalent state but, as merging
does not modify R4 (n), its size will remain 1. Therefore, the output A’ is a
pseudo-minimal HDTA.

Algorithm 4 Pseudominim(A, t)

1: Create a list 2 containing visited(A, t) in topological order.
2: R — (@ — visited(A, t)

3: while Q # () do

4: Pop the first state ¢ in .

5. if thereis p € R: ¢~ p then

6: Let (0,q1,...,qm,q) be the unique transition in fanin(q)
7: AHAi{(UﬂQIa'"7QM7Q)}U{(07Q1a"'7QM7p)}

8: Remove ¢ from @, F and A.

9: n(o,q1y - qm;p) = 00, q1, -+, qm» q)

10: else

11: R — RU{q}

12: end if

13: end while

14: return A

The pseudo-minimization requires using an agenda €2 with the sequence of states
(in topological order and without duplicates) visited when the HDTA operates on
the tree. For efficiency, both (2 and the register R containing unvisited states
can be computed during the recursive traversal performed by function Split.
The equivalence test in line 5 of algorithm 4 is non-recursive (and has, thus, a
straightforward implementation), that is, transitions in fanout(q) and fanout(n)
must be identical when ¢ and n are exchanged.

After pseudo-minimization, the HDTA A’ obtained using the incremental con-
struction algorithm 2 accepts L(A’) = L(A) U {t}, remains proper, and is pseudo-
minimal. The method can be trivially modified [7] to deal with the removal of trees,
the only difference being that line 2 in function AddTree reads FT = F — {AT(¢)}.

Algorithm 1 modifies the mapping 7 so that the new HDTA A’ accepting L(A)U
{t} outputs the required hash code for t. Trees not in L(A) will be assumed to
output a null hash code (indicating no hash code was found) and, consistently, the
required hash codes will be strictly positive integers.

If 7, = (0,i1,...,%m,J) is the proper transition in A storing the value n(r,) as-
sociated to a tree u € L(A), it will remain proper for u after posterior incremental
additions leading to a new HDTA A’ provided that i1, ...,1%,, and j remain unvis-
ited after every new addition. However, if 7,, includes visited states as arguments,
it may be removed from A (at line 20 in function Split) or become shared with
the added tree ¢, in the sense that |R 4+(j)| becomes larger than one once Af(t) is
added to F'T and, then, ha/(t) > 0 before SetHash is called.

Both situations can be addressed by selecting a proper transition for v higher in
the tree (see lines 69 in algorithm 3). This updating can be repeated recursively

INCREMENTAL SCHEME USING PSEUDO-MINIMAL AUTOMATA 789

until a new transition for « is found which is not shared with ¢. It is also worth
to be remarked that:

e The addition of new transitions at line 17 only takes place if |£4(q)| > 1
and, therefore, the only transition 7, € A containing ¢ as input cannot be
a proper transition.
e Pseudo-minimization does not modify the languages R 4+, so a transition
Tu = (0,41,...,9m,7) which is proper for u # t will remain proper for
w if it remains in A. If its output j is merged with a pseudo-equivalent
state p, then (o,i1,...,4m,p) becomes a proper transition for « (line 9 in
algorithm 4). In contrast, source states i1, ...,%, cannot be merged as
|RAT (Zk)| > 1.
In conclusion, the mapping 1 can be also efficiently updated with some local op-
erations during the addition of a new tree ¢t to the HDTA without the need to
reprocess all trees in the language.

6. CONCLUSIONS

We have presented a method to implement perfect hashing on unranked trees
using bottom-up deterministic tree automata. Instead of using minimal DTA —
as in [12] —, this method uses a class of DTA, called pseudo-minimal hash DTA
which, at the cost of a possible size increase, can implement arbitrary hashing.
The algorithm presented in [7] has been adapted for the incremental construction
of pseudo-minimal hash DTA and, based on this construction, a procedure to
identify the proper elements and their associated codes has been devised.

Acknowledgements. This research was partially supported by the Spanish CICyT through
grants TIN2006-15071-C03-01 and TIN2009-14009-C02-01. The authors thank M.L.
Forcada for his useful suggestions.

REFERENCES

[1] J. Aoe, K. Morimoto and M. Hase, An algorithm for compressing common suffixes used in
trie structures. Trans. IEICE, J75-D-1I (1992) 770-779

[2] J. Aoe, K. Morimoto and M. Hase, An algorithm for compressing common suffixes used in
trie structures. Systems and Computers in Japan 24 (1993) 31-42. Translated from Trans.
1IEICE, J75-D-II (1992) 770-779.

[3] R. Bayer and E.M. McCreight. Organization and maintenance of large ordered indices. Acta
Informatica 1 (1972) 173-189.

[4] W.S. Brainerd, The minimalization of tree automata. Information and Control 13 (1968)
484-491.

[5] R.C. Carrasco and M.L. Forcada, Incremental construction and maintenance of minimal
finite-state automata. Computational Linguistics 28 (2002) 207-216.

[6] R.C. Carrasco, J. Daciuk and M.L. Forcada, An implementation of deterministic tree au-
tomata minimization, edited by J.Holub and J. Zdarek, CIAA2007, 12th International Con-
ference on Implementation and Application of Automata Proceedings. Lect. Notes Comput.
Sci. 4783 (2007) 122-129.

790 R.C. CARRASCO AND J. DACIUK

[7] R.C. Carrasco, J. Daciuk and M.L. Forcada, Incremental construction of minimal tree au-
tomata. Algorithmica 55 (2009) 95-110.

[8] M. Ciura and S. Deorowicz, How to squeeze a lexicon. Software — Practice and Ezperience
31 (2001) 1077-1090.

[9] H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, D. Lugiez, S. Tison and M. Tommasi,
(1997). Tree automata techniques and applications. Available on: http://www.grappa.
univ-1lille3.fr/tata. release October, 1st 2002.

[10] Z.J. Czech, G. Havas and B.S. Majewski, Perfect hashing. Theoret. Comput. Sci. 182 (1997)
1-143.

[11] J. Daciuk, Comments on incremental construction and maintenance of minimal finite-state
automata by C. Rafael Carrasco and L. Mikel Forcada. Computational Linguistics 30 (2004)
227-235.

[12] J. Daciuk, Perfect hashing tree automata, edited by T. Hanneforth and K.-M.Wiirzner,
Proceedings of Finite-State Methods and Natural Language Processing: 6th International
Workshop, FSMNLP 2007, 97-106, Potsdam, September 14-16 (2007).

[13] J. Daciuk, S. Mihov, B.W. Watson and R.E. Watson, Incremental construction of minimal
acyclic finite-state automata. Computational Linguistics 26 (2000) 3-16.

[14] J. Daciuk, D. Maurel and A. Savary, Dynamic perfect hashing with finite-state automata,
edited by M.A. Klopotek, S. Wierzchori and K. Trojanowski, Intelligent Information Pro-
cessing and Web Mining, Proceedings of the International 11S: IIPWM’05 Conference held
in Gdarisk, Poland, June 13-16 (2005). Advances in Soft Computing 31 (2005) 169-178.

[15] J. Daciuk, D. Maurel and A. Savary, Incremental and semi-incremental construction of
pseudo-minimal automata, edited by J. Farre, I. Litovsky and S. Schmitz, Implementation
and Application of Automata: 10th International Conference, CIAA 2005. Lect. Notes
Comput. Sci. 3845 (2006) 341-342.

[16] C. Doran, D. Egedi, B.A. Hockey, B. Srinivas and M. Zaidel, XTAG system — a wide coverage
grammar for english. In Proceedings of the 15th International Conference on Computational
Linguistics (COLING 94), Vol. 11, Kyoto, Japan (1994) 922-928.

[17] C. Lucchiesi and T. Kowaltowski, Applications of finite automata representing large vocab-
ularies. Software — Practice and Experience 23 (1993) 15-30.

[18] M.P. Marcus, B. Santorini and M. Marcinkiewicz, Building a large annotated corpus of
english: the Penn Treebank. Computational Linguistics 19 (1993) 313-330.

[19] D. Maurel, Pseudo-minimal transducer. Theoretical Computer Science 231 (2000) 129-139.

[20] M. Nivat and A. Podelski, Minimal ascending and descending tree automata. SIAM J.
Comput. 26 (1997) 39-58.

[21] D. Revuz, Dictionnaires et lexiqgues: méthodes et algorithmes. Ph.D. thesis, Institut Blaise
Pascal, Paris, France. LITP 91.44 (1991).

[22] D. Revuz, Dynamic acyclic minimal automaton, edited by S. Yu and A. Paun, CIAA
2000, Fifth International Conference on Implementation and Application of Automata.
Lect. Notes Comput. Sci. 2088 (2000) 226-232.

[23] G. Rozenberg and A. Salomaa, Handbook of Formal Languages. Springer-Verlag, New York,
Inc., Secaucus, NJ, USA (1997).

[24] A. Russell, Necessary and sufficient conditions for collision-free hashing, in CRYPTO ’92:
Proceedings of the 12th Annual International Cryptology Conference on Advances in Cryp-
tology, London, UK. Springer-Verlag (1993) 433-441.

[25] K. Sgarbas, N. Fakotakis and G. Kokkinakis, Two algorithms for incremental construction
of directed acyclic word graphs. International Journal on Artificial Intelligence Tools 4
(1995) 369-381.

Communicated by C. Choffrut.
Received January 12, 2009. Accepted September 3, 2009.

http://www.grappa.univ-lille3.fr/tata
http://www.grappa.univ-lille3.fr/tata

	Introduction
	Bottom-up deterministic tree automata
	Pseudo-minimal tree automata
	Identification of proper transitions
	Incremental hashing
	Conclusions
	References

