
RAIRO-Theor. Inf. Appl. 43 (2009) 567–583 Available online at:

DOI: 10.1051/ita/2009011 www.rairo-ita.org

LABELED SHORTEST PATHS IN DIGRAPHS
WITH NEGATIVE AND POSITIVE EDGE WEIGHTS ∗

Phillip G. Bradford
1 ,∗∗

and David A. Thomas
2

Abstract. This paper gives a shortest path algorithm for CFG (con-
text free grammar) labeled and weighted digraphs where edge weights
may be positive or negative, but negative-weight cycles are not allowed
in the underlying unlabeled graph. These results build directly on an
algorithm of Barrett et al. [SIAM J. Comput. 30 (2000) 809–837]. In
addition to many other results, they gave a shortest path algorithm for
CFG labeled and weighted digraphs where all edges are nonnegative.
Our algorithm is based closely on Barrett et al.’s algorithm as well as
Johnson’s algorithm for shortest paths in digraphs whose edges may
have positive or negative weights.

Mathematics Subject Classification. 68Q25, 52B05, 68Q42,
05C78.

1. Introduction and motivation

Barrett et al. [1–3] use labeled graphs to model travel through multiple modes
of transportation. Different modes of transportation are associated with different
labels. Using the expressive power of formal languages, only specific combinations
of multimodal transportation may be allowed. In some cases, different modes
of transportation give different net gains or losses as compared to other options.

Keywords and phrases. Shortest paths, negative and positive edge weights, context free
grammars.

∗ Partially supported by NSF grant 0244156 “Collaborative Research: REU Site for Pervasive
and Mobile Computing”.
1 Department of Computer Science, The University of Alabama, Box 870290, Tuscaloosa,
AL 35487-0290, USA; pgb@cs.ua.edu
2 Mercer University, Department of Computer Science, 1400 Coleman Ave, Macon, GA 31207,
USA; David.A.Thomas@student.Mercer.edu
∗∗ Partially supported by a University of Alabama Research Advisory Committee (RAC)
grant.

Article published by EDP Sciences c© EDP Sciences 2009

http://dx.doi.org/10.1051/ita/2009011
http://www.rairo-ita.org
http://www.edpsciences.org

568 P.G. BRADFORD AND D.A. THOMAS

Graphs with negative edge weights allow these models to compare and contrast
gains and losses by intermixing different transportation options.

For example, suppose your employer is reimbursed for your travel from point
x to point y at a fixed rate per mile traveled directly reflecting your car’s travel
costs. Reimbursement is only for the shortest path from x to y where all edges
are weighted at your car’s reimbursement rate. Shortest paths from x to y can be
found by computing the shortest paths on a transportation graph while weighting
each edge e with the product of its length and the reimbursement rate. Thus if
you have opportunity to use a variety of different modes of travel (public transit,
cab, train, etc.) you may re-weight the edges to reflect the net amount gained or
lost while intermixing various transport options. For example, a link of your travel
using your car has net cost 0, a link traveled by limousine will have a positive net
cost, a link traveled by public transit may run at 1/3 your car’s cost per mile giving
it net cost of −2/3 per mile, etc. So a shortest path from x to y in such a net-cost
augmented graph may include both positive and negative labeled edge weights.
Finally, in such transportation graphs, specific combinations of multimodal transit
may be allowed or restricted using path labels.

Intuitively, this paper applies the Bellman-Ford algorithm to detect certain
negative-length paths in labeled graphs in a Johnson-algorithm framework [6,9].
Also, by applying an efficient algorithm of Barrett et al. along with Johnson’s
algorithm this paper gives an efficient way to find shortest paths in graphs with
negative edge weights.

1.1. Background

A labeled directed graph (LDG) G = (Σ, V, E) is a multigraph consisting of a
set V of vertices and the edge set

E ⊆ V × V × (Σ ∪ {ε})× IR

of labeled, directed, and weighted edges. All edge weights are represented or ap-
proximated in a way that each arithmetic and comparison operation takes constant
time.

Given an edge e = (u, v, t, r) ∈ V ×V × (Σ∪{ε})× IR, then e is from node u to
node v, this edge is labeled by the symbol t and its cost is r. An edge (u, v, ε, r)
is unlabeled.

An LDG G is a multigraph that may have several edges (all labeled differently)
between any two distinct nodes. No self-loops are allowed. That is, take two edges
e1 = (u, v, t1, r1) and e2 = (u, v, t2, r2). If t1 = t2, then u �= v and r1 = r2. This
also holds for t1 = t2 = ε (the unlabel).

Definition 1.1. Given an LDG G = (Σ, V, E), for any pair of nodes (u, v) ∈
V × V , take the set

T (u, v) = {(u, v, ti, ri) : (u, v, ti, ri) ∈ E}.

LABELED SHORTEST PATHS WITH NEGATIVE AND POSITIVE EDGES 569

The LDG G’s underlying unlabeled subgraph is G1 = (V, E1), where (u, v, ri) ∈
E1 iff

ri = min{rj : (u, v, tj , rj) ∈ T (u, v)}.

Given any LDG G, this paper assumes its underlying unlabeled subgraph G1 =
(V, E1) has no negative cycles. This may be checked, after some minor preprocess-
ing, using the Bellman-Ford algorithm in O(|V ||E|) operations [6].

Given an edge e = (u, v, t, r), then the edge label and edge weight functions are

l(e) = t and w(e) = r.

If e = (u, v, t, r), then by the uniqueness of edge labels w(u, v, t) = r.
A path p is completely described by its edges es → · · · → et all in E. The path

p has the label

l(p) = l(es) . . . l(et).

The path p has cost

w(p) =
t∑

i=1

w(ei).

A context-free grammar G = (N, Σ, P, S) consists of a set of nonterminals N , a
set of terminals Σ, a set of productions P and the start symbol S which is a
nonterminal. Let ε �∈ Σ, be the empty symbol.

An LDG G has a grammar G associated with it. This paper assumes all gram-
mars are given in Chomsky normal form (CNF).

Given a context-free grammar G and a path p and its edge label l(p), then we
say p is a validly labeled path iff l(p) ∈ L(G), see for example [8].

Definition 1.2. Given an LDG G = (Σ, V, E) and let u, v ∈ V , then

p =
A

u� v

means there is a valid labeled path p starting from nonterminal A using L(G) from
node u to node v in G.

Since this paper assumes all CFGs are in Chomsky normal form (CNF), all of
the productions P of any CFG G = (N, Σ, P, S) are of the form:

S −→ ε

A −→ BC

D −→ x for some x ∈ Σ

570 P.G. BRADFORD AND D.A. THOMAS

where S is the start symbol. The elements S, A, B, C and D are non-terminals and
the production (S −→ ε) ∈ P iff the grammar G can generate the empty string ε.
Moreover, if G can generate the empty string, then the start-symbol S cannot be
on the right-side of any production.

The issue of unlabeled paths can be treated separately from labeled paths.
Consider an LDG G = (Σ, V, E) and its associated grammar G where this grammar
G can generate the empty symbol.

To find unlabeled paths separately from finding labeled paths follow the next
steps:

1. create the subgraph G′ = (V, E′) of G, where both G′ and G have the
same vertices;

2. the graph G′ has edges that are exactly the unlabeled edges of G. That
is, E′ = {e : l(e) = ε ∧ e ∈ E};

3. run a standard all-pairs shortest path algorithm on G′ that allows edge
weights to be negative or positive, while ignoring the ε labels. For example,
Johnson’s algorithm [6,9] or Floyd-Warshall [6] will do.

Thus, since the unlabeled case can be done as just illustrated, from here, on all
edges are labeled with terminal symbols.

1.2. Previous work

Mendelzon and Wood [10] give database applications of labeled shortest path
problems. They give complexity results for regular expression labeled simple paths.

In addition to numerous other significant results, Barrett et al.’s important pa-
per [1] gave two algorithms for finding shortest paths in LDGs with nonnegative
edges weights. Their first algorithm, called BJM from here on, costs
O(|V |5|N |2|R|2) operations and the second algorithm, Fast-BJM from here on,
costs O(|V |3|N ||R|). Their proof-of-correctness holds only for nonnegative edges.
It seems they deliberately chose to exclude negative edge weights since negative
edge weights were not directly applicable to their research. Nonetheless, our first
result shows Barrett et al.’s O(|V |5|N |2|R|2) algorithm works on LDGs with nega-
tive or positive edge weights but no negative-weight cycles. Furthermore, we point
out that Barrett et al.’s O(|V |3|N ||R|) algorithm does not work for LDGs with
negative edge weights. Barrett et al. never suggested their algorithms worked
for negative edge weights. To work with negative and positive edge weights we
give a rendition of Johnson’s algorithm using Fast-BJM. Our new algorithm is
Johnson-Fast-BJM and it assumes there are no negative cycles in the underlying
subgraph, see Definition 1.1.

Yannakakis [13], page 237, points out that Valiant’s Boolean matrix multiplica-
tion context-free word recognition algorithm can be used for single-source labeled
path reachability in DAGs. Bradford and Choppella [4] give an algorithm, using
the exact-path problem [11], to find shortest paths in LDGs where the edge labels
are from Dyck and semi-Dyck languages. Their algorithm [4] costs O(|V |ω log n)
where ω is the exponent for multiplying two |V | × |V | Boolean matrices. For
example, to date [5,6], the smallest value for ω is about 2.376.

LABELED SHORTEST PATHS WITH NEGATIVE AND POSITIVE EDGES 571

Greenlaw et al. [7] discuss several formal-language based reachability problems
that are P-complete. For example, the LGAP problem is a semi-Dyck language
constrained reachability problem on a directed graph G that is P-complete. Ruzzo
uses a simulation by a one-way non-deterministic push-down automata to show
the acyclic LGAP problem is LOGCFL [7,12].

2. Shortest paths in labeled directed graphs

There are many practical shortest path algorithms [6,14]. The basic (min, +)
algorithm solves the all-pairs shortest path distance problem. There are more
efficient algorithms for the single-source problem with non-negative edge weights
(Dijkstra’s algorithm) or sparse graphs (Johnson’s algorithm). See Zwick [14] for
a recent survey on shortest path algorithms, including approximation algorithms.
To the best of our knowledge, other than work mentioned in Section 1.2, there has
not been a lot of work on shortest path problems for labeled and weighted graphs.

Given an LDG G, its underlying unlabeled subgraph G1 = (V, E1), and its
associated context-free grammar G, this paper assumes G1 has no negative cycles.
Since G1 has no negative cycles, then G cannot have any labeled negative cycles.

Lemma 2.1. Given an LDG G = (V, E) with its underlying unlabeled subgraph
G1 = (V, E1), and its associated context-free grammar G. If G1 has no negative
cycles, then G cannot have any labeled negative cycles.

Proof. For the sake of a contradiction, suppose G1 has no negative cycles, but G
has at least one labeled negative cycle. Let this cycle be

p =
A

v0 � v0

and assume p is made of more than one node.
Given G consider constructing G1. Each time two nodes u and v are connected

by edges in E, then there is an edge (u, v, r) ∈ E1 where (u, v, r) is of minimal
weight among all labeled edges connecting u and v in E by Definition 1.1. This
is regardless of (u, v, r)’s original label in G. Therefore, the unlabeled edges in
G1 representing p must form a negative cycle in G1, giving a contradiction and
completing the proof. �

Barrett et al.’s algorithms are based on the next definition and the recurrence
following it.

Definition 2.1 (Barrett et al. [1]). Given an LDG G = (Σ, V, E) and let A be a
nonterminal belonging to context free language associated with G.

Define D(u, v, A) as the approximate shortest path distance from node u to
node v where this path is constructed according to the language derived from the
nonterminal A.

Intuitively, if p =
A

u� v and the cost of p is finite, then D(u, v, A) starts out
as an upper-bound on the cost of p and converges down to the actual cost of p as
the labeled path algorithms run.

572 P.G. BRADFORD AND D.A. THOMAS

Given a LDG G = (Σ, V, E), Barrett et al. [1] give the next recurrence for
computing D(u, v, A):

D(u, v, A) = min
A→BC

{
min
k∈V
{D(u, k, B) + D(k, v, C)}

}
and for a fixed literal t,

D(u, v, t) =
{

w(u, v, t) if (u, v, t) ∈ E
+∞ otherwise.

Barrett et al. [1], Observation 15, give several algorithms for LDGs. Their al-
gorithms culminate in Fast-BJM costing O(|V |3|N ||R|) for solving the all-pairs
shortest distances problem.

Algorithm 1 Initialize the APSD LDG algorithms

// Given an LDG G = (Σ, V, E) where the grammar is in CNF.
1. Initialize-Matrix D(G)
2. for all pairs (u, v) ∈ V × V do
3. for all nonterminals A ∈ N do
4. D(u, v, A)← +∞
5. for all edges (u, v) ∈ E do
6. for all productions A→ t where t ∈ Σ do
7. if l(u, v) = t then
8. D(u, v, A)← D(u, v, t)← w(u, v, t)
9. Return D

Theorem 2.1 gives our analysis of the BJM algorithm, which is Algorithm 2.
Theorem 2.1 indicates that the BJM algorithm works on LDGs with edges having
either negative or positive edge weights. Barrett et al. [1], page 817, describe their
algorithm as a Bellman-Ford-type algorithm. However, it seems in the context of
their Observation 15 and its surrounding discussion that their use of a Bellman-
Ford-type algorithm was focused on how the productions of the grammar are split
and not the values of the digraph’s edges.

Definition 2.2. Given an LDG G = (Σ, V, E) and let u, v ∈ V and say u
A� v.

Let δ(u, v, A) be the shortest labeled-path distance from u to v whose label can
be derived from nonterminal A.

Let G = (Σ, V, E) be an LDG. Given Definition 2.2, if u, v ∈ V , then u � A� v

indicates there is no valid labeled-path from u to v in G. That is, u � A� v means
D(u, v, A) = δ(u, v, A) = +∞.

Barrett et al. [1] indicate the following result holds, but in their context LDGs
have nonnegative edges.

LABELED SHORTEST PATHS WITH NEGATIVE AND POSITIVE EDGES 573

Algorithm 2 BJM: Barrett et al.’s O(|V |5|N |2|R|) algorithm [1]

// Given an LDG G = (Σ, V, E) where the grammar is in CNF.
1. BJM(G)
2. Initialize-Matrix D(G)
3. Repeat |V |2|N | Times
4. for all pairs (u, v) ∈ V × V do
5. if u �= v then
6. for all nonterminals A ∈ N do
7. D(u, v, A) = min

A→BC
{ min

k∈V
{D(u, k, B) + D(k, v, C) }}

8. Return D

Lemma 2.2. Given an LDG G = (Σ, V, E) with positive and negative edge weights
and no negative cycles. Consider the set

D = {D(u, v, A) : u
A� v ∧ D(u, v, A) > δ(u, v, A)}

then executing lines 4–7 of BJM (Algorithm 2) sets the value of at least one
D(u, v, A) ∈ D to δ(u, v, A) thus removing D(u, v, A) form D.

Proof. This paper assumes the grammar of L(G) is in Chomsky normal form.
All D(u, v, t) where t is a terminal cannot change, thus D(u, v, t) = δ(u, v, t).

Therefore, no such D(u, v, t) can be in D. Similarly, if the nonterminal, say, B is
in a production of the form B → b for some terminal b, then D(u, v, B) is fixed and
cannot be in D. Finally, for any u, v and nonterminal A if there is no labeled path
from u to v that starts from A, then D(u, v, A) = +∞ and this is also minimal.
Thus, if u � A� v for nonterminal A, then D(u, v, A) �∈ D.

The only remaining productions from the Chomsky normal form CFG are of
the form A→ BC where B and C are nonterminals. This leads to the next claim:

Claim 2.1. If D �= ∅ then there must be at least one D(u, v, A) ∈ D so that there
is a production A→ BC and some k ∈ V where

D(u, k, B) �∈ D and D(k, v, C) �∈ D.

Suppose for the sake of a contradiction that this claim does not hold. In particular,
say for every D(u, v, A) ∈ D so that all productions A → BC and all k ∈ V are
so that

D(u, k, B) ∈ D or D(k, v, C) ∈ D.

Since D(u, v, A) ∈ D, then u
A� v holds and let p be this validly-labeled path

from u to v in G. The CNF grammar starting from the nonterminal A can be
represented as a binary tree T all of whose internal nodes are nonterminals and
all external nodes (leaves) are terminals. These external nodes label each of the

574 P.G. BRADFORD AND D.A. THOMAS

edges in the path p and p is a simple path because G has no negative cycles. Let
X be the deepest nonterminal in N derivable from A such that D(ui, vj , X) ∈ D
for some ui, vj in the path p. Without loss, say X → Y Z, then both nonterminals
Y and Z must be so that D(ui, k, Y) �∈ D and D(k, vi, Z) �∈ D for some k ∈ V
giving a contradiction thus substantiating the claim.

Now, say D �= ∅, then by Claim 2.1 there is some D(u, v, A) ∈ D so that there is
a production A→ BC and some k ∈ V where D(u, k, B) �∈ D and D(k, v, C) �∈ D,
thus the minimization in line 7 of Algorithm 2 sets the value of D(u, v, A) to
D(u, k, B) + D(k, v, C) which must be δ(u, v, A), completing the proof. �

Theorem 2.1. BJM (Algorithm 2) works on LDGs whose weighted edges may be
either positive or negative, but without negative-weight cycles.

Proof. Given an LDG G = (Σ, V, E) where the edge weights may be negative or
positive but there are no negative cycles.

By Lemma 2.2 at least one array element D(u, v, A) is set as

D(u, v, A) ← δ(u, v, A)

in each run of lines 4-7 of BJM (Algorithm 2).
Since BJM loops |V |2|N | times at line 3, then for all u, v ∈ V and all A ∈ N it

must be that D(u, v, A) = δ(u, v, A).
This completes the proof. �

Once BJM is run on an LDG G, then negative cycles can be discovered by
running CheckForNegativeCycles(G, D) as given in Algorithm 3. Clearly, this
algorithm costs O(|V |3|N ||R|).

Algorithm 3 Checking for negative cycles

// Given an LDG G = (Σ, V, E) where the grammar is in CNF and
// say BJM (Algorithm 2) has already computed the D(u, v, A) values
1. CheckForNegativeCycles(G, D)
2. for all pairs (u, v) ∈ V × V do
3. for all nonterminals A ∈ N do
4. D(u, v, A) = min

A→BC
{min

k∈V
{D(u, k, B) + D(k, v, C)}}

5. Return D

Theorem 2.2. Given a LDG G = (Σ, V, E) with negative or positive edge weights
and suppose BJM(G) returns the set {D(u, v, A) : u, v ∈ V ∧ A ∈ N}. If any
D(u, v, A) decreases during a run of CheckForNegativeCycles(G, D), then there is
a negative cycle in G.

Proof. Suppose there is a validly labeled negative cycle in the LDG G:

p =
A

u� u.

LABELED SHORTEST PATHS WITH NEGATIVE AND POSITIVE EDGES 575

Since we do not allow self-loops for any node, it must be that there is a production
A→ BC where the path p is comprised of two shortest labeled paths

p1 =
B

u� v

p2 =
C

v � u

so that w(p1)+w(p2) < 0. Both D(u, v, B) and D(v, u, C) must have been returned
by BJM by Theorem 2.1.

However, this means for some production A→ BC, it must be that

D(u, u, A) > min
A→BC

{min
k∈V
{D(u, k, B) + D(k, u, C)}},

which will be detected by CheckForNegativeCycles(G, D) in Algorithm 3. �

3. Barrett et al.’s O(|V |3|N ||R|) algorithm

This section briefly reviews the Fast-BJM algorithm (Algorithm 4). This al-
gorithm assumes a min heap-structure keyed off of the D(u, v, A) values. This
is very reminiscent of the min heap used by Dijkstra’s algorithm. The function
Initialize-Heap H(G) on line 3 simply puts the D values in an array of length
|V |2|N |.

The next result is due to Barrett et al. [1]. We refer the reader to [1] for the
proof.

Theorem 3.1 (See [1]). Given an LDG G = (Σ, V, E) where all edge weights
are nonnegative. At the termination of the algorithm Fast-BJM, D(u, v, A) =
δ(u, v, A) for all (u, v, A) ∈ V × V ×N .

This may be proved using the next loop invariant:

I1: At the start of each iteration of the while loop on line 5 of Figure 4,
D(u, v, A) = δ(u, v, A) for all D(u, v, A) ∈ S.

3.1. Fast-BJM fails on LDGs with negative edge weights

Fast-BJM does not work on LDGs with negative edge weights as is shown here
with a concise example. This example is supplied since in Theorem 2.1 we showed
BJM (Algorithm 2) does correctly find shortest labeled paths on LDGs whose
weighted edges may be positive or negative. Again, we mention, Fast-BJM was
not intended to work on LDGs with negative edge weights, see [1].

576 P.G. BRADFORD AND D.A. THOMAS

Algorithm 4 Fast-BJM: Barrett et al.’s O(|V |3|N ||R|) algorithm [1]

1. Fast-BJM(G) // where G = (Σ, V, E)
2. Initialize-Matrix D(G)
3. Initialize-Heap H(G)
4. S1 ← ∅
5. while H �= ∅ do
6. D(u, v, X)← extractMin(H)
7. S1 ← S1 ∪ {D(u, v, X)}
8. for all productions of the form A→ BC do
9. if B = X then
10. for all vertices v0 ∈ V do
11. L← P (u, v0, A)
12. val← D(u, v, B) + D(v, v0, C)
13. if val < D(L) then
14. decreaseKey(H, L, val)
15. if C = X then
16. for all vertices u0 ∈ V do
17. L← P (u0, v, A)
18. val← D(u0, u, B) + D(u, v, C)
19. if val < D(L) then
20. decreaseKey(H, L, val)
21. Return D

Consider the following grammar (S is the start symbol):

S → ε

S → a

S → AA

A → AA

A → a

which gives the language {an : n ≥ 0}.
The LDG in Figure 1 is a very basic case where Fast-BJM fails to find correct

shortest path distances.
The objective is for Fast-BJM to compute shortest path distances from u to

v derived from A. Fast-BJM first removes the element D(u, v, A) = −5 from its
heap H and adds it to the set S1. However, this violates invariant I1 in the proof
of Theorem 3.1. For lines 12 or 18 in Algorithm 4 cannot reduce the value of
D(u, v, A). Thus, the algorithm will terminate with D(u, v, A) = −5, while the
actual shortest path from u to v derived from A has weight −6.

LABELED SHORTEST PATHS WITH NEGATIVE AND POSITIVE EDGES 577

u v

k

-5

-3 -3
a a

a

Figure 1. A labeled graph with negative edge weights.

3.2. Augmenting Fast-BJM to work with LDGs where each edge may

have positive or negative weight

It is well known that Johnson’s algorithm [9] finds shortest paths for graphs with
negative edge weights but having no negative cycles [6,9]. Johnson’s algorithm also
solves the all-pairs shortest path problem efficiently for sparse graphs.

Here we give an algorithm, Johnson-Fast-BJM, that works on LDGs where
each edge may have negative or positive weight, but negative weight cycles are
not allowed in the underlying unlabeled subgraphs. More precisely, our algorithm
works for LDGs whose underlying unlabeled subgraphs do not have negative cycles,
see Definition 1.1.

A key challenge is justifying and adjusting Johnson’s reweighting scheme for
several differently labeled edges between any pair of nodes. We build a graph
consisting of the lowest-cost edges between each pair of vertices while ignoring the
edge-label constraints. The Bellman-Ford algorithm is applied to this cheapest
edge-cost graph to find the shortest possible path from the source vertex to all other
vertices. Then Johnson’s reweighting scheme can be applied using these shortest-
paths. This works due to a minor variation of the classical triangle inequality
which holds since we do not allow the unlabeled graph to have negative cycles.
Intuitively, edge label constraints can only lead to more costly paths than those
in such lowest-cost edge graphs.

Johnson-Fast-BJM is essentially an application of Barrett et al.’s Fast-BJM
in a Johnson-style framework. Johnson-Fast-BJM also uses the Bellman-Ford
algorithm on the underlying unlabeled subgraph to detect negative cycles in the
underlying graph. Johnson-Fast-BJM’s cost is dominated by Fast-BJM which is
O(|V |3|N ||R|) time. Next we discuss both the intuition and mechanics of the
algorithm Johnson-Fast-BJM. A proof of correctness is given in Theorem 3.2.

Consider a graph G with CFG G and first apply Johnson’s reweighting tech-
nique [6,9]. That is, construct a new weighted and labeled digraph G′:

1. Create G′ vertex set V (G′)← V (G) ∪ {s} where s �∈ V (G) is a new node.
2. Create the edge set E(G′)← E(G) ∪ {(s, v, x, 0) : v ∈ V (G′) ∧ x �∈ Σ}.

That is, (s, v, x, 0) is a zero-weight x-labeled directed edge from s to v
where x is not a previously used edge-label. Augment the CFG G so that

578 P.G. BRADFORD AND D.A. THOMAS

each string in L(G) starts with a single occurrence of the new symbol x.
All other edges in E(G′) inherit their labels and weights from G(E).

Any pair of nodes (u, v) in the new graph G′ have weight,

w′(u, v) =

{
min
t∈Σ
{w(u, v, t)} if there is at least one edge from u to v,

+∞ otherwise.

Consider an LDG G = (Σ, V, E) whose edge weights may be either positive or
negative. Check G’s underlying unlabeled subgraph, in lines 4 to 8 of Algorithm 5,
for any negative cycles. If there is a negative cycle in G’s underlying unlabeled
subgraph, then report it and stop. Otherwise, we continue following the structure
of Johnson’s algorithm.

In the graph G′, let δBF (s, v) be the shortest path distance between s and v
found by applying the Bellman-Ford algorithm to the underlying unlabeled sub-
graph using the weight function w′.

The triangle inequality holds for the weight function w′ as computed by Bellman-
Ford in Johnson-Fast-BJM:

δBF (s, v) ≤ δBF (s, u) + min
t∈Σ
{w(u, v, t)} (triangle inequality)

for all edges (u, v) ∈ E[G]. Proving this can be done by contradiction. For the
sake of a contradiction, suppose

δBF (s, v) > δBF (s, u) + min
t∈Σ
{w(u, v, t)} (1)

but this contradicts the fact that δBF (s, v) is a shortest path value between s and
v using edges with minimal weights (including edges with negative weights). No
matter what other weight is considered for an edge between u and v the triangle
inequality still holds. This includes w(u, v, t) = +∞ for all t ∈ Σ, for example
when there is no valid CFG labeled path from u to v. Note, that Bellman-Ford
will return FALSE iff Equation (1) holds for any v ∈ V .

Take the assignment h(v)← δBF (s, v) as given in line 10 of Johnson-Fast-BJM.
Next, define a new weight function [1,9]:

ŵ(u, v, t) = w(u, v, t) + h(u)− h(v).

Moreover, it must be that ŵ(u, v, t) ≥ 0 for all edges (u, v, t) ∈ E[G], otherwise we
will violate the triangle inequality above. This will be formally shown in the next
proof.

Then run the Fast-BJM algorithm on the LDG G but with the augmented
weight function ŵ. At the termination of Fast-BJM, then δ̂(u, v, A) will be equal
to D(u, v, A) − h(u) + h(v). Lines 14 and 15 re-adjust these values back to
D(u, v, A) for all nonterminals A ∈ N , completing the algorithm.

The proof of the next theorem closely follows the proof of correctness of
Johnson’s algorithm as given in Cormen et al. [6].

LABELED SHORTEST PATHS WITH NEGATIVE AND POSITIVE EDGES 579

Algorithm 5 Johnson-Fast-BJM algorithm

// Given an LDG G = (Σ, V, E) with positive or negative edge weights
// and associated CFG G = (N, Σ, P, S)
// Only works if G’s underlying unlabeled subgraph has no negative
weighted cycles
1. Johnson-Fast-BJM(G)
2. Take a node s �∈ V and a new nonterminal x �∈ Σ and compute G′:
3. V [G′]← V [G] ∪ {s} and E[G′]← E[G] ∪ {(s, v, x, 0) : v ∈ V [G]}
4. Add nonterminals S′, X �∈ N to N and the rules S′ → XS and
X → x to P
5. Make S′ the new start symbol of G
6. for all (u, v, t) ∈ E[G] do
7. w′(u, v)← min

t∈Σ
{w(u, v, t)}

// Replacing the weight function w with w′ from Bellman-Ford
8. if Bellman-Ford(G′(w′), s) = FALSE then
9. print “G’s underlying unlabeled subgraph contains a negative
weight cycle”
10. Exit;
// Bellman-Ford gives δBF (s, v) for all v ∈ V [G′] ignoring edge labels in G′

11. for each vertex v ∈ V [G′] do
12. h(v)← δBF (s, v)
13. for each edge (u, v, t) ∈ E[G′] do
14. ŵ(u, v, t)← w(u, v, t) + h(u)− h(v)
15. δ̂ ← Fast-BJM(G(ŵ)) // LDG Gwith the weight function ŵ replacing w
16. for all (u, v, A) ∈ V [G]× V [G]×N do
17. D(u, v, A)← δ̂(u, v, A) + h(v)− h(u)
18. Return D

Theorem 3.2 (Correctness of Johnson-Fast-BJM). Given an LDG G whose edge
weights may be positive or negative, but G’s underlying unlabeled subgraph has no
negative cycles. Johnson-Fast-BJM (Algorithm 5), computes the shortest labeled
path values in G in O(|V |3|N ||R|) operations. Moreover, it detects negative weight
cycles in the underlying unlabeled graph and terminates.

Proof. First, lines 4 through 8 of Johnson-Fast-BJM will detect and report any
negative cycles in G’s underlying unlabeled subgraph. If there are any negative
cycles in G’s underlying unlabeled subgraph, then Johnson-Fast-BJM reports this
and terminates.

The transformation between w and ŵ is classical. A proof of correctness can
be found in [6,9]. We recall these relevant facts here for completeness.

580 P.G. BRADFORD AND D.A. THOMAS

In line 6 of Algorithm 5 the Bellman-Ford algorithm computes (ignoring edges’
labels) all shortest path values from s. Then, as in lines 11 and 12, for all (u, v, t) ∈
V (G)× V (G)× Σ, let

ŵ(u, v, t) = w(u, v, t) + h(u)− h(v).

That is, h(x) = δBF (s, x) for all x ∈ V [G], which is computed by Bellman-Ford
ignoring edge labels and using the weight function w′(u, v) = mint∈Σ{w(u, v, t)}.
As already noted,

h(u)− h(v) + min
t∈Σ
{w(u, v, t)} ≥ 0

must hold, otherwise suppose

δBF (s, u)− δBF (s, v) + min
t∈Σ
{w(u, v, t)} < 0

but this violates the triangle inequality. Since by assumption, G’s underlying
unlabeled subgraph has no cycles, the triangle inequality holds for all δBF (s, v)
computed by Bellman-Ford. Thus, ŵ(u, v, t) ≥ 0 for all (u, v, t) ∈ E[G].

Now, we make the following claim [6,9] about the LDG G:

Claim 3.1. Consider the labeled shortest path p =
A

v0 � vk. The path p is a
shortest validly labeled path from v0 to vk using weight function w iff the path p
is a shortest validly labeled path from v0 to vk using weight function ŵ.

This claim is only different from Johnson’s [9] or that found in [6] by requiring
the paths to be validly labeled paths. Next, mirroring the classic proof, we prove
Claim 3.1.

Thus, following the standard proof, the labeled path p =
A

v0 � vk has cost

ŵ(p) =
k∑

i=1

ŵ(vi−1, vi, ti)

=
k∑

i=1

w(vi−1, vi, ti) + h(vi−1)− h(vi)

= w(p) + h(v0)− h(vk),

by telescoping of the h values. By assumption the string t1t2 . . . tk−1 ∈ L(G) where
G is the context-free grammar associated with G.

Consider a validly labeled shortest path p from nonterminal A,

p =
A

v0 � vk,

in G(w) using the weight function w.

LABELED SHORTEST PATHS WITH NEGATIVE AND POSITIVE EDGES 581

[[[

[[[

[[[

[[[

]

]

]]

]

]]]

]

]]

]

Node 1

Node 16

4

13

Figure 2. A labeled grid graph.

Now suppose there is another labeled shortest path p1 from nonterminal A,

p1 =
A

v0 � vk

in G(ŵ) using the weight function ŵ.
Assume the paths p and p1 have at least one different node, but both of their

labels are derived from the nonterminal A.
Now by definition

ŵ(p) = w(p) + h(v0)− h(vk)
ŵ(p1) = w(p1) + h(v0)− h(vk)

thus, if ŵ(p1) < ŵ(p), then it must be that w(p1) < w(p) meaning p is not a
shortest labeled path from v0 to vk after all. Therefore, if p is a shortest labeled
path using the weight function w, then it is a shortest labeled path using the
weight function ŵ and vice versa. This proves Claim 3.1.

Both ŵ(u, v, t) is nonnegative for all (u, v, t) ∈ V × V × Σ and D(u, v, A) +

h(u)−h(v) is nonnegative for all (u, v, A) ∈ V ×V ×N . Moreover, if p =
A

v0 � vk

is a shortest labeled path from v0 to vk, then w(p) = D(v0, vk, A) and ŵ(p) =
D(v0, vk, A) + h(v0) − h(vk) ≥ 0 by telescoping as just shown. Therefore, Fast-
BJM in line 13 of Algorithm 5 will run correctly and we can re-adjust the δ̂ values
in lines 14 and 15.

The algorithm Johnson-Fast-BJM(G) has running time dominated by Fast-
BJM(G). Thus, the total running time of Johnson-Fast-BJM(G) is O(|V |3|N ||R|).
All other operations, including Bellman-Ford which costs O(|V ||E|), are within the
O(|V |3|N ||R|) bound, which completes the proof. �

582 P.G. BRADFORD AND D.A. THOMAS

3.3. An example

As an example we show how the Johnson-Fast-BJM algorithm works by com-
puting a shortest path on a directed grid graph. We follow the Algorithm 5 very
closely. This grid graph has n2 nodes for some integer n where each directed hori-
zontal edge is labeled with an “[” while each directed vertical edge is labeled with
an “]”. See Figure 2. Thus, to match opening parenthesis with closing parenthesis,
in going from node 1 to node 16 requires the path to be at or below the diagonal.
Such a parenthesization is a semi-Dyck grammar [8].

Formally, this semi-Dyck grammar G = (N, Σ, P, S) has start-symbol S and
nonterminals S, T, A, A−1, the two terminals Σ = {[,]} and the rules,

S → SS

S → AA−1

S → TA−1

T → AS

A → [
A−1 →].

To start, in Figure 2 initially weight all horizontal edges with −1 and all vertical
edges with −2. Now, reweight the single horizontal edge 3 → 4 with +1 and
reweight the single vertical edge 4 ↑ 8 with −10. As expected, it is not hard to see
that Fast-BJM will not work properly in this case.

However, by adding a new start node s �∈ {1, 2, . . . , 16} and all edges (s, i, x, 0),
for i ∈ 16 ≥ i ≥ 1, where the new terminal x �∈ Σ. Moreover, assuming S′ �∈ N
and X �∈ N , then add the new nonterminals S′ and X to N and make S′ the
start nonterminal. Finally, add the two new rules S′ → XS and X → x where S
was originally the start symbol. This augmentation of the grammar G forces all
labeled paths to start from the new node s.

Next, we compute Bellman-Ford of the augmented graph while ignoring the edge
labels. The graph edges weights are the lowest edge weights available discarding
the labels. If the underlying graph has a negative cycle, then the algorithm halts.
Otherwise we get all h(v) = δBF (s, v) values for all v ∈ V while ignoring the
labels. As was shown in the proof of correctness, the h(v) values computed this
way, are sufficient to allow Fast-BJM to correctly compute the shortest labeled
paths (which may only cost more than the shortest un-labeled paths). Now, after
normalizing the edge weights using Johnson’s technique, then we run Fast-BJM
as expected and finally de-normalize the shortest path weights.

References

[1] C. Barrett, R. Jacob and M. Marathe, Formal-language-constrained path problems. SIAM
J. Comput. 30 (2000) 809–837.

LABELED SHORTEST PATHS WITH NEGATIVE AND POSITIVE EDGES 583

[2] C. Barrett, K. Bisset, M. Holzer, G. Konjevod, M. Marathe and D. Wagner, La-
bel Constrained Shortest Path Algorithms: An Experimental Evaluation using Trans-
portation Networks. Tech. Report: Virginia Tech (USA), Arizona State Univer-
sity (USA), and Karlsruhe University (Germany), Presented at at the workshop on
the DIMACS Shortest-Path Challenge, http://i11www.ira.uka.de/algo/people/mholzer/
publications/pdf/bbhkmw-lcspa-07.pdf

[3] C. Barrett, K. Bisset, R. Jacob, G. Konejevod and M. Marathe, Classical and contemporary
shortest path problems in road networks: Implementation and experimental analysis of the
TRANSMIS router. European Symposium on Algorithms (ESA 02). Lect. Notes Comput.
Sci. 2461 (2002) 126–138.

[4] P.G. Bradford and V. Choppella, Fast Dyck and semi-Dyck constrained shortest paths on
DAGs (submitted).

[5] D. Coppersmith and S. Winograd, Matrix multiplication via arithmetic progressions. J.
Symb. Comput. 9 (1990) 251–280.

[6] T.H. Cormen, C.E. Leiserson, R.L. Rivest and C. Stein, Introduction to Algorithms, 2nd
edition. MIT Press (2001).

[7] R. Greenlaw, H.J. Hoover and W.L. Ruzzo, Limits to Parallel Computation: P-
Completeness Theory. Oxford University Press (1995).

[8] J.E. Hopcroft and J.D. Ullman, Introduction to Automata Theory, Languages, and Com-
putation. Addison-Wesley (1979).

[9] D.B. Johnson, Efficient algorithms for shortest paths in sparse networks. J. ACM 24(1)
(1977) 1–13.

[10] A.O. Mendelzon and P.T. Wood, Finding regular simple paths in graph databases. SIAM
J. Comput. 24 (1995) 1235–1258.

[11] M. Nykänen and E. Ukkonen, The exact path length problem. J. Algor. 42 (2002) 41–53.
[12] W.L. Ruzzo, Complete pushdown languages. Unpublished manuscript (1979).
[13] M. Yannakakis, Graph-theoretic methods in database theory. In Proceedings of the

Ninth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems
(PODS ’90). ACM, New York, NY (1990) 230–242.

[14] U. Zwick, Exact and Approximate Distances in Graphs – A survey. In Proceedings of the
Ninth ESA (2001) 33–48.

Communicated by C. Choffrut.
Received October 5, 2006. Accepted January 6, 2009.

http://i11www.ira.uka.de/algo/people/mholzer/publications/pdf/bbhkmw-lcspa-07.pdf
http://i11www.ira.uka.de/algo/people/mholzer/publications/pdf/bbhkmw-lcspa-07.pdf

	Introduction and motivation
	Background
	Previous work

	Shortest paths in labeled directed graphs
	Barrett et al.'s O(|V|3 |N| |R|) algorithm
	Fast-BJM fails on LDGs with negative edge weights
	Augmenting Fast-BJM to work with LDGs where each edge may have positive or negative weight
	An example

	References

