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DYNAMIC OVERLOADING WITH COPY SEMANTICS
IN OBJECT-ORIENTED LANGUAGES:
A FORMAL ACCOUNT*

LORENZO BETTINI!, SARA CAPECCHI' AND BETTI VENNERI?

Abstract. Mainstream object-oriented languages often fail to provide
complete powerful features altogether, such as, multiple inheritance,
dynamic overloading and copy semantics of inheritance. In this paper
we present a core object-oriented imperative language that integrates
all these features in a formal framework. We define a static type sys-
tem and a translation of the language into the meta-language \_object,
in order to account for semantic issues and prove type safety of our
proposal.
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1. INTRODUCTION

The dynamic flexibility of object-oriented languages is essentially based on the
concepts of polymorphism and dynamic binding. The former, together with sub-
typing and substitutivity, allows the programmer to treat different, but related,
objects uniformly. The latter ensures that the right operation is performed when
a message is sent to such objects, according to their actual type. The choice of
combining dynamic binding with static (polymorphic) typing seems to be the suit-
able solution to achieve both flexibility and reliability in most popular languages,
such as Java [4] and C++ [40].
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However, static typing raises some limitations in exploiting dynamic method
selection. An interesting case concerns method overloading, i.e., the ability to
write methods with the same name, which associate different bodies to different
parameter types. In mainstream languages, the interpretation of overloading is
static, since the actual code to execute in a method call is selected by the com-
piler, according to static types of the parameters. Thus polymorphism is not
exploited fully (e.g., [22] calls this kind of polymorphism “adhoc”). To overcome
this limitation, a common programming practice is to resort to RTTI (run time
type information) mechanisms and if statements, in order to explore manually the
run-time type of an object, and to type downcasts, in order to force the view of
an object according to its run-time representation. These techniques are discour-
aged by object-oriented design, since they undermine re-usability and evade the
constraints of static type checking. Another alternative is to implement double
dispatch [28], for example using the Visitor pattern [27]. This solution, however,
requires the programmer extra effort since the dynamic dispatch mechanism must
be explicitly programmed. Moreover, a cyclic dependence arises from the structure
of the pattern, so undermining code re-usability.

Multi-methods [6,15,23,36] naturally support dynamic overloading: the same
message name is associated to a set of different bodies (branches) and the run-
time selection of the body to invoke depends not only on the actual type of the
receiver (single dispatch) but also on the dynamic types of the arguments (multi-
ple dispatch). A major advantage of multi-methods is to enable a safe covariant
specialization of methods, where subclasses are allowed to redefine a method by
specializing its arguments. There is general evidence that covariant code special-
ization is an indispensable practice in many situations [10,34]: its most expressive
application appears with binary methods [7], i.e., methods that act on objects of
the same type as the receiver.

In this paper our main goal is to investigate the interaction between dynamic
overloading and (multiple) inheritance in a formal framework, combine them in a
theoretical model, and prove type safety of the proposed approach. To this aim
we define DOCS (dynamic overloading with copy semantics), a lightweight class-
based language that brings basic object-oriented mechanisms into an imperative
setting, while adding multiple inheritance and multi-methods. Concerning the
interpretation of inheritance, DOCS adopts a copy semantics, in the sense that
all the inherited overloaded methods are intended to be directly copied into the
subclass. This avoids a too restrictive overloading resolution policy that leads
to “strange” compilation errors or unexpected behaviors. We note that the above
features, multiple inheritance, multi-methods and copy semantics, are not provided
altogether in related approaches (see, e.g., [6,15,21,29,32]).

We base the foundation of our proposal on A_object [15,16], an extended typed
lambda-calculus which can be used as a meta language for modeling object ori-
ented features in a functional context. DOCS semantics is defined by translation
into A\_object; this provides a deeper understanding of the integration of dynamic
overloading with other features, such as encapsulation (any object encapsulates its
methods) and copy semantics. Since A_object is type safe, by proving that every
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well typed DOCS program is translated in a well typed A_object term, we obtain
an indirect proof of static type safety for DOCS, i.e., well typed programs will not
generate type errors at run time. Moreover, A_object is very close to actual object-
oriented programming language implementations: this is particularly evident in
that class methods are basically translated into functions that take the receiver of
method invocation as a parameter (see, e.g., [31]). Thus, the semantics of DOCS
into A_object gives practical hints to drive the language implementation according
to the formal specification. The semantics of DOCS is inspired by KOOL [15,16]
translation into A_object for what concerns some basic language expressions. In-
stead, there is a crucial difference in multi-method interpretation, because of the
copy semantics characterizing our approach. Furthermore, since translational se-
mantics is type-driven, then differences in typing lead to significant differences
between DOCS and KOOL semantics.

1.1. DESIGN ISSUES

In this section we discuss the main choices that characterize our approach with
respect to other proposals.

DOCS implements dynamic overloading by supporting multi-methods. Indeed
a standard method is seen as a particular case of a multi-method with only one
branch; thus the distinction between static and dynamic overloading is made at the
level of method invocation (DOCS provides two different constructs for message
sending). This choice increases the flexibility of programming and the reuse of
classes: methods are declared in a uniform way and then used through method
calls, by choosing the most suitable overloading policy.

Concerning multi-methods, DOCS aims at being an integration of different
design choices.

We can distinguish two kinds of multi-methods in the literature: 1) the encap-
sulated multi-methods that preserve the class-based encapsulation property (as
in [6]); 2) the view of multi-methods as global functions external to classes (as
in [17,30,32,38]). In the former approach the principle that an object has a set of
associated methods is preserved.

In method selection, dispatch can be asymmetric in the sense that the receiver
(and possibly other parameters) has the precedence over other parameters during
selection. When the receiver and other parameters participate together in deter-
mining the version of the method to be executed we have symmetric dispatch.

Usually encapsulated multi-methods are equated to asymmetric multiple dis-
patch [7] while, in our opinion, the two aspects are orthogonal. Obviously it seems
more natural to have asymmetric dispatch when methods are encapsulated: since
there is a privileged receiver, we can think of it as the parameter driving method
selection. Instead, there are extensions of single dispatching languages to encapsu-
lated multi-methods that simulate symmetric dispatch [8,21] and languages, such
as CLOS [30], adopting asymmetric dispatch for selecting the right body of generic
functions. Indeed, the choice between symmetric or asymmetric dispatch can be
also driven by the need for modularity: an order on parameters during method
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selection can resolve the ambiguities that arise when linking together software
modules defining behaviors for the same message. For instance, asymmetric dis-
patch is a solution for a language like CLOS, which is dynamically typed, in order
to avoid ambiguities at run time; another example is the extension of Java with
parasitic methods [6] which gives the precedence to the receiver object in method
selection, to obtain modular type checking.

Clearly, method selection with symmetric dispatch is a more flexible mechanism,
since it can choose among all the available versions defined for a message name (it
does not restrict the choice to the bodies defined in the class of the receiver). The
problem is that with symmetric dispatch it is hard to obtain a good compromise
between type safety [26,39] and flexibility [32].

The approach chosen for DOCS is to adopt encapsulated multi-methods and
symmetric dispatch, while preserving type safety and programming flexibility.

As for the inheritance mechanism, we chose to consider multiple inheritance,
since single inheritance is not expressive enough to design class hierarchies and it
may lead to duplicate code since it fails in factoring out all the common features
shared by classes in a complex hierarchy. Multiple inheritance is rather expressive
but it complicates the issue of “ambiguities resolution” already introduced by mul-
tiple dispatch. Indeed, considering the interaction between multiple inheritance
and multiple dispatch makes our approach more general; the adaptation to the
single inheritance case is straightforward, while the other way round is not.

Concerning the interpretation of inheritance, [3] points out that semantics of
overloading and inheritance is rather “clean” if it is interpreted through a copy
semantics, where all the inherited overloaded methods are intended to be copied
into the subclass (apart for those explicitly redefined by the subclass itself). In
DOCS, we adopt copy semantics of inheritance as a strategy for the resolution of
possible ambiguities due to overloading (not as an implementation technique). We
note that the resolution policy for static overloading in Java has followed copy se-
mantics since version 1.4. From a foundational point of view, following Meyer [35],
inheritance nicely fits a framework where classes are viewed as functions, a special
case of sets; the basic idea for modeling inheritance is that a class is the “union”
of its own definition and those of its parent(s) (according to the model of [1]). The
“flattening” of classes is also adopted in engineering of object oriented systems in
particular to study the impact of inheritance on object oriented metrics [11] and
for specifying the semantics of classes that use traits [25].

DOCS is equipped with a type system in order to model the considered features
and their interaction in a type safe way. Indeed the main goal of our approach is
to guarantee type safety (other approaches do not enjoy this property [5,14,24]):
typing rules ensure that no run time error will occur due to missing or ambiguous
branches during dynamic multi-method invocation. The key notion of well formed
multi-type (used to type multi-methods) is inspired by [15,16] but differs from it in
that it takes into account that copy semantics is implemented in deducing multi-
types. As a consequence, for instance, many static ambiguities that could be raised
using the rules of [15,16] are automatically resolved in DOCS, in particular when
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class Inspector {
Report Inspect(EUROO xc){...}
Report Inspect(EURO1 xc){...}
}

class Inspector_2006: Inspector {
Report Inspect (EURO2 *c){...}

}

class Inspector-2007: Inspector-2006 {
Report Inspect(EUROO xc){...}
Report Inspect(EURO1 xc){...}

}

Listing 1: The gas emission example, where EUR02 is a subtype of EURO1, which
is a subtype of EURDO.

single inheritance is involved. In Section 2 we present an example to show how
copy semantics combines encapsulated multi-methods with symmetric dispatch.

Finally, we mention that the issue of modularity is out of the scope of the
present paper, where we type-check each DOCS program as a single module con-
taining all the classes that are used in it. Indeed modularity is a key problem
when integrating multi-methods with symmetric dispatch into a language: mod-
ules developed separately, which pass type checking in isolation, may cause type
errors when combined. Some works on multi-methods have resolved the problem
either by relying on a global type checking [20,32] or by adopting asymmetric dis-
patch [6,7]. Other approaches are the result of the effort spent on modular type
checking in the presence of multi-methods [19,21,33]. Concerning our proposal, the
solutions presented in [19,21,33] can be exploited to obtain a type safe composition
of DOCS modules.

2. EXAMPLE

The integration of dynamic overloading in a language increases the complexity of
ambiguities resolution during method selection since the set of applicable methods
becomes larger when considering also the dynamic type of the parameters. Since
type safety is a primary goal for us, the risk is that of adopting a resolution
policy that is too strict. To show the advantages of copy semantics we use the
example in Listing 1. The class Inspector represents inspectors checking cars
gas emission according to European Commission’s standards. Cars are classified
according to their gas emission in different categories (EUR00,EURO1,EUR02), so
the method Inspect is defined on different car types and returns a Report object
including information about the inspection. Now let us suppose that, at the time
when class Inspector was designed, the available categories where EUR00 and
EURO1. In the year 2006 the category EUR02 is added so a subclass Inspector_2006
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class Inspector {
Report Inspect(EUROO xc){...}
Report Inspect(EUROL1 xc){...}

}

class Inspector_2006: Inspector {
Report Inspect(EUROO xc){...}
Report Inspect(EURO1 xc){...}
Report Inspect(EURO2 xc){...}

'/ copied down from class Inspector

NN

'/ copied down from class Inspector

}

class Inspector_2007: Inspector_2006 {
Report Inspect(EUROO xc){...}
Report Inspect(EURO1 *c){...}
Report Inspect(EURO2 xc){...} // copied down from class Inspector_2006

Listing 2: The gas emission example with copy semantics

is defined to deal with these new rules. Finally, in the year 2007 the rules to
evaluate older vehicles (EUROO and EURO1) become stricter so we redefine in a new
class Inspect_2007 the Inspect method for parameter of type EUROO and EURO1;
instead the rules for EUR02 are still valid so we do not need to redefine the branch
for EURO2 in the class Inspect_2007 (we simply inherit it).

Let us consider the semantics of the call Insp.Inspect(car), when Insp and
car have dynamic types Inspector_2007 and EURO2, respectively.

Adopting symmetric dispatch (the receiver and the parameter participate to-
gether in method selection), the above call should be considered ambiguous. In-
deed the version of Inspect defined in class Inspector_2006 is the most specific
w.r.t. the argument type, while both versions defined in Inspector_2007 are more
specific w.r.t. the receiver type. Should we detect the ambiguity rejecting the def-
inition of method Inspect or reject ambiguous method calls? In both cases the
code would be rejected because unsafe resulting in a too restrictive policy.

A second alternative is to choose asymmetric dispatch. In this case the receiver
has priority in method selection, so the body to execute must be chosen among
the versions defined in Inspector_2007. This way, we partially lose the flexibility
of dynamic dispatch, since the version for EUR02 is not considered.

Instead, let us consider an interpretation based on copy semantics: all the
method versions defined in the superclass are indented to be copied into the sub-
class (Listing 2). Thus, the body of Inspect, with parameter EURO2 copied in
Inspector_2007, is selected as the most specialized version for both the receiver
and the argument.

In summary by the use of copy semantics of inheritance we obtain a symmetric
dispatch semantics with encapsulated multi-methods without renouncing static
type safety and programming flexibility.
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TABLE 1. Syntax of DOCS: classes, methods and programs.

program == classdef * body
classdef == class A : A, "€F {
Bi f el
branchdef;; €7
b
branchdef := m branches
B’k (B, xx){body,}; <
end
body = localdecl; stmnt;return exp
localdec] = A1 x1 = expy;...;An Tn = exp,

TABLE 2. Syntax of DOCS: expressions and statements.

exp = =z
| this

| this. f

| methinvok

| new A(exp,,...,exp,)

stmnt :=  methinvok
| left = exp
| stmnty; stmnts

left T

this. f

methinvok == receiver < m(exp’)
| receiver «— m(exp’)

receiver = exp
| super(A)

3. THE CORE LANGUAGE DOCS

DOCS is proposed as a contender for a minimal core calculus, including basic
imperative features of standard object-oriented languages such as C++ and Java,
together with more advanced features like encapsulated multi-methods and copy
semantics of inheritance.

The syntax of DOCS is defined in Table 1 and 2 starting from

— a set ClassNames of class names denoted by A, B, C, (4;, B;, C;);
— a set Fields of names for record fields denoted by f;
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— a set Identifiers of identifiers including the set Var of standard variables
denoted by z, y, and the set MethNames of method names denoted by
m, n, m;, n;. We use £ to denote any identifier x or m. We denote with
MethNames(p) the set of names of the methods defined in a program p.

Notation. Let program = classdef * body then MethNames(classdef *) will de-
note MethNames(program). With respect to the object-oriented core of standard
mainstream languages, we adopt the following main simplifications, concerning
features that are no relevant for our purpose:

— all methods accept only one parameter;

— we do not consider field access since is an orthogonal feature w.r.t. the
problem a issue; thus class fields are all private, and field selection can be
performed only on this; let us note that the construct this.f allow us to
model mutable objects;

— in order to simplify the presentation of typing, the programmer of the
subclass is required to repeat all the instance variables of the superclass,
as suggested in [16].

In Table 1 the structure of a program is defined as
classdef * body

where classdef * is a sequence (possibly empty) of class definitions. Each class
definition can refer to any other class, including its sub-classes, in defining its
fields and methods. Class definitions are followed by a body that plays the same
role of main in C++ and Java. Let us note that in class definitions, the set of
superclasses Ay, "€ can be empty.

Since our core language is essentially imperative, we want to treat assignments
and side-effects, thus we need to deal with references. In particular, all class fields
and method local variables are considered as updatable memory cells (i.e., all
variables are to be considered as Java or C++ references). As in Java, we do not
want to specify this behavior in the program: instead of declaring a variable as
ref T' = we simply write T' z, with the same meaning. Accordingly, the assignment
between variables x = y has to be intended as x = Ty, where Ty is the value
referred to by y. The distinction between a reference or location and the value
stored in that location is hidden to the programmer, while it will be explicit in
formal specifications of typing and semantics. This makes it significantly easier to
write type-checking rules and translational semantics.

A multi-method is as a collection of overloaded methods associated to the same
message (method name). We will refer to a single overloaded method of a multi-
method m as a branch of m. Class (overloaded) methods are written according to
the branchdef rule.

Notation. If b = m; branches B'y; (By; x,;){bodyy, }; k€Ki end then we use
the notation name(b) = m,.

We allow method bodies to call the implementation of a method in a super-class
with the construct super(A), where A is a super-class of the current class method.
If we considered only single inheritance, we could simply use supery().
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Concerning method invocation, dynamic binding is employed, in any case, but
when super(A) is explicitly used, thus always selecting the most redefined imple-
mentation. In particular, all branches of a multi-method declared in a superclass
are intended to be implicitly inherited by derived classes, thus implementing a full
form of copy semantics of inheritance [3]. Note that in our syntax we only consider
multi-methods: standard methods are multi-methods with only one branch. We
distinguish two different linguistic constructs for method invocation, denoted by
«— and < that will be associated to different mechanisms for selecting the right
branch of the method in DOCS semantics:

— receiver <+ m(exp) is used for the standard static overloaded method invo-
cation, i.e., the branch of the multi-method is selected statically according
to the static type of the parameter (static overloading), and dynamically
according to the run time type of the receiver (single dispatch);

— receiver <= m(exp) is used for dynamic overloading method invocation,
where the branch of the multi-method is selected dynamically according
both to the run time type of the receiver and to the run time type of the
parameter (double dispatch).

Note that the receiver of a method invocation can be either an expression exp or
super(A) where A € ClassNames.

4. TYPING

The typing system is straightforward as far as basic object-oriented features
are concerned. Our focus is on rules for typing multi-methods, class definitions
and then programs. Indeed our primary goal is to ensure that neither “method
not understood” nor “method ambiguous” errors can occur in multi-methods dis-
patch. The notion of multi-type to be associated to multi-methods and its well
formedness are widely inspired by [15,16]. However, the adoption of copy seman-
tics of inheritance makes our rules different from [15,16] in some crucial points (for
instance the multi-type union constructor, Def. 4.8) leading to a totally different
typing of a program as a whole. As a consequence, many static ambiguities that
could be raised using the rules of [15,16] are automatically resolved in DOCS.

Following the approach of Featherweight Java [29], we build a class table CT'(p)
that contains type information for all the classes in a program p. This table is
crucial to type checking multi-method declarations with branches whose parameter
types are associated to classes that have not been defined yet: indeed, a class B can
use the name A and viceversa without any issue about which class is defined first.
This is a general feature of mainstream languages, such as Java, that is modeled
in DOCS. Then we first generate the class table CT(p) from class definitions,
which associates to each class name both the type representing its fields and its
superclass relations. Using C'T(p) the declarative part is type checked in order to
produce the type environment that is needed to type the rest of the program.
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TABLE 3. Syntax of types.

A == ClassNames (atomic types)
I == (AxA) (input types)
R == ((fi:ref Ay;...; fr:ref Ay))  (record types)
T == A|I|T—T]|ref A|unit (Types)

{h—-T,....I, =Ty}

The section is organized as follows:

in Sections 4.1 and 4.2 we define the syntax of types and we specify the
subtyping relation respectively;

in Section 4.3 we formalize the notion of well formed types;

in Section 4.4 we define typing rules for DOCS programs. The typing
rules presented in this section are parameterized w.r.t. a type environment,
which is a triple (C, S,T);

in Section 4.5 we finally formalize well typedness for DOCS programs: we
first define how to generate the triple (Cp, Sp,I'p), from any program p,
then we use (C), Sp, I'p) for type checking the rest of the program (method
bodies and the main body), according to the rules of Section 4.4.

4.1. SYNTAX

The syntax of types is defined in Table 3. Atomic types are class names. It is
straightforward to include built in types as atomic types so, when convenient, we
will use atomic types such as boolean, real, integers etc. We denote by Atom-
icTypes the set of atomic types. Input types are used to represent types of the
input in arrow types, namely input types for methods in our case. Record types
are used to represent the types of the instance variables of objects. Let us consider
the following class definition:

class A : Ay,..., A {
By fh3 heH
branchdef;; €7

b

then the record type associated to objects of class A is (f1 : ref Bi;...; fx :
ref By)) where H = {1,...,k}.
U, U;, T, T; will denote types of our system, thus including;:

atomic types;

arrow types;

product types;

reference types (ref A);

unit (denoting the type of assignments);
multi-types ({1 — T1,..., I, — Tn}).
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Multi-types are sets of arrow types representing branches of multi-methods. A
multi-type X is of the form

E:{Il —>T1,...,In _)Tn}
where each input type I; is a pair type, (4 x B).

Reference types are used to represent updatable variables. In order to take into
account that any variable z of type ref A denotes a location which can store a
value of type A, we introduce the following type operation on 7', T', in order to
distinguish between the type of x and the type of the value stored in that location.

Definition 4.1 (ref destructor).

T A itfT=ref A
T otherwise.

4.2. SUBTYPING

Now we define the notion of subtyping (<) on types. The subtyping relation is
assumed to be given on atomic types in a type constraint environment. Then we
define rules to extend subtyping to all types.

Definition 4.2 (Type constraint environment C). A type constraint environment
C is the definition of an order relation on atomic types, such that:

1. VA € AtomicTypes(4, A) € C;
2. (A,B)eC and (B,A)e C = A=B,
3. (A,B)eC and (B,C)eC = (A,C)eC.

Definition 4.3 (Rules for subtyping relation <).

CFTZ'<Ty, CFTy<T3
CFTIL<T;

CkHA<B CHTLT

CHA<A CFB<B
C"(AXB)S(A1X31)

for (A,B)eC

CF (fi:ref Ay .5 friref Ao fryjiref Apyy) <
{(fr:ref Ay;...5 fr:ref Ag)

CrT<Ty CHU<U
CHFTYy -U<L<T—-U
Vk e K,3j € JsuchthatC' = I <Ijand C + T, =1Tj
O+ A{L; = T;} 77 < {Ix — Ti} *° '




528 L. BETTINI, S. CAPECCHI AND B. VENNERI

We will write C' A < Bif C + A < B can be proved by using rules of the above
Definition, by omitting C' when it is clear from the context. Let us observe that
subtyping on atomic types is an order relation; instead, subtyping on types is a
preorder, only for the case of multi-types. Namely, given two multi-types ¥; and
Yo, X1 < Yo if and only if for every arrow type in Yo there is at least one arrow
type with greater input type and equal return type in X;. Now, if A’ < A then
{A-T}<{A->TA - T}and {A—-T,A - T} <{A — T}, which does
not imply {A — T, A" — T} = {A — T}; see [16], page 117, for details on this
subject. In our language, since we do not have higher order functions, this is not
a big issue: our input types consist of pairs of atomic types (Tab. 3), for which
the subtyping is an order.

Thus C' is intended as a set of assumptions on atomic types and it will be used
to record subtyping relations on them. The subtyping relation induced by C' on
atomic types is assumed to be acyclic.

4.3. WELL FORMED TYPES

The notion of well formedness, formally stated in Definition 4.5, introduces a
suitable restriction on multi-types, depending on a subtyping relation on atomic
types. From now on we will call pretypes the types that are (possibly) not well
formed, while Types will denote the set of well formed types and the member-
ship to Types is indexed by the type constraint system C' (€¢) on which well
formedness relies.

We denote by RecordTypes the set of record types whose fields are typed by
well formed types.

Definition 4.4 (Maximal types). Let G be a set of input types such that G C
Types and C be a type constraint environment. The set Top~(G) of maximal
types of G with respect to C' is so defined:

Tope(G)={1€G|VI'eGst. I'#1:C+HI LT}

In the following definition, LB¢ (I}, I;) denotes the set of common lower bounds
of input types I; and ;.

Definition 4.5 (Well formed types).

(i) A €cTypes unit €cTypes for any type constraint system C;
(i) if A,B,Ty,T>» €c Types then T} — T €c Types, (A x B) €c Types
and ref A €cTypes;
(@ii) if for all j,i € K, K ={1,...,n}
(a) Ljuy, Tju) €c Types,
(C) if C F Iz < Ij then Tz = Tj,
(d) for all maximal types I’ in LBc(I;,I;) (i.e. for all I' €
Topo(LBc(1;,1;)) there exists h € K such that I), = I,
then {Ik — Tk} keK €c Types.
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(A3 X Bg) < (A2 X B3) < (A2 X B2)
(A3 X Bs) < (A3 X Bg) < (A2 X Bg)

FIGURE 1. Subtyping relations between input types.

Then atomic types are well formed types (point (i)) and also arrow and product
types whose internal types are well formed (point (ii)).

Multi-types (point (iii)) are constrained by the crucial consistency conditions of
the above definition, that are checked statically. Condition (b) is quite standard
on overloaded definitions also in C++ and Java'. Condition (c) guarantees that a
branch specialization maintains the same return type. Condition (d) is the most
crucial one: it implies that for any type I, such that I < I; and I < I;, then there
must be one input type in {I, — Ty} *$X say I, such that I < Ij,, I;, < I; and
I, < I;. Informally speaking, let us consider the following type constraint system:

C={Ay<A,By <B;,A3 < Ay,B3 < By}

and two branches in a multi-type ¥ whose input types are I = (A; X Bs) and I' =
(A2 x By). We first build the set of common lower bounds of I and I’ w.r.t. the
class hierarchy represented by C"

LBc(I,I/) = {(AQ X BQ), (AQ X B3), (A3 X Bg), (A3 X B3)}

Then we build the set of maximal types of this set, that is, any maximal type of
a chain of lower bounds of I, I’ (see Fig. 1):

Topo(LBe (I, 1) = {(A2 x Ba)}.

To satisfy condition (iiid) (As x Bz) has to belong to ¥. This last condition will
play a crucial role in catching at compile time any possible static and dynamic
ambiguity in multi-method calls, since it ensures that for every potentially am-
biguous pair of (receiver type X parameter type) there is always an input type
solving the ambiguity (in the above example, it is (A2 x Bs)). Its meaning will
become clear when discussing the typing of method invocation.

L For simplicity, we adopt the restriction of requiring the return types to be equal, thus
concentrating our attention on parameters types which play the crucial role in dynamic method
selection. We note that, in our approach, no technical difficulty would arise if the above definition
of well formedness was extended to covariance of return types, as in [15,16]. In most programming
languages return types are not used in overloading resolution; in Java, for instance, 7} and Tj
can be completely unrelated and this is sound because overloading resolution is static (namely,
resolution of static overloading and covariance of return types are two unrelated features in Java
and C++).



530 L. BETTINI, S. CAPECCHI AND B. VENNERI

4.4. TYPING DOCS CONSTRUCTS

In this section we define a type system for assigning types to expressions, method
bodies and the main body of a program in a given type environment consisting in
the triple (C,S,T") where:

— C'is a type-constraint environment (see Def. 4.2);

— S is an environment recording the internal representation of classes;
namely, a set {41 : Ry,..., 4, : R,} where A;’s are class names and
R;’s are record types representing the types of A;’s fields;

— I' is a type environment associating types to identifiers (this, variables
and multi-method names).

Record environment S. A record environment S is a finite set (possibly empty)
{41 : Ry,..., A, : R,} where Ry,...,R, are are record types of the shape
{(f1 : vef By;...; fn:rvef By). Ay,..., A, are the subjects of S, as for the type
environments C' and I'. All subjects of S are pairwise disjoint and Dom(S) =
{A|A: R € S}. S associates to each atomic type the representation of the objects
of the corresponding class.

For instance, given the following class definition:

class A : A;,..., A {
B; f;; el
branchdef;; €7

%

then a record environment S can be updated for recording the representation of
A in the following way:

SU{A: {(f1:ref By;...; fr:ref Bi)}

provided that A ¢ Dom(S). We write S(A) = R to denote that A: R € S.
Type environment I'. The static environment I' is a finite set (possibly empty)
{1 :Ty,...,¢, : T,} where:
— {l1,..., 4, are called the subjects of T';
— we denote by Dom(T") = {¢|¢ : T € T'} the domain of T
— ¢; # {; for each ¢;, {; € Dom(T) (i # j).
Then, if £ : T € T we write I'(¢) = T. Let us note that, according to DOCS
syntax, identifiers ¢; can only be:

— variables i.e. x : T

— the special identifier this, then I'(this) = A for some class name A;

— method names, then m : ¥ implies that ¥ is a multi-type; informally, 3
records the type of the branches of each multi-method in the form (A x
B) — T, where A is the type of the class where the branch has been
defined and B is the type of the argument of the branch.

In the following we define the notion of consistency for the triple (C, S, T").
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Definition 4.6 ((C,S,T') consistency).
The triple (C, S,T') is a consistent environment if and only if:

1. C is consistent with S, that isif C - A < B then C - S(A) < S(B).
2. T is consistent with C' and S
—ifexp:ref Ae€T orexp: AeT then S(A) = R for some R;
—ifm: X €T then ¥ €¢ Types (that is ¥ is well formed w.r.t. the
subtyping relations of C').

Notice that point (1) implies that all fields of the superclass A are repeated in
the subclass B.

Given a consistent environment (C, S,T'), (C, S,T'[¢ — T']) will denote the con-
sistent environment (C,S,TV) where IV = T'\(¢{ : T) U {¢ : T'}. Typing rules use
formulas of the shape C;S;T'F¢ : T, where ¢t is a DOCS term (i.e., a program,
a body, an expression, a statement or a class definition), 7" is a well formed type
w.r.t. C and the triple (C, S,T') is assumed to be consistent.

Typing rules. Typing rules, parameterized on (C,S,T'), are presented in Ta-
bles 4 and 5. Let us observe that the environment I' is never updated but in the
case of rule Bopy] and [PROGRAM-CLASY: the context I' is updated by adding
reference types of variables and parameters and the type of this, in order to check
that the method body is well typed.

Multi-method invocation. In DOVMETHCALL and SOVMETHCALI rules, we
search for the most appropriate (specialized) branch for the invocation assuming
that I" associates to m the corresponding well formed multi-type. Note that, thanks
to the definition of well-formed type (predicate € Types), if such a branch exists
it can be selected without ambiguities.

Let us discuss this in further details. If a multi-method invocation is well typed,
with type X, then for any possible input type I = (A x B) the set IT (4 p) of
invocable branches input types

IT(AXB) = {(Az X Bz) | (A X B) S (A,L X Bz)}
selected from ¥, is not empty. This means that there will always exist a possible
choice of a branch to call for all actual choices of static types (A x B) and dynamic
subtypes of (A x B). This ensures that in a well typed program no message-not-
understood error will take place.

Moreover, since ¥ is well-formed, the above set IT (4 p) contains a minimum
input type, say I = (Ar x Bg), i.e., (Ap x Bg) < (A; x B;) for all (A; x B;) €
IT (ax By, by condition (7iid) (in Def. 4.5) of well-formedness. The branch of type
I, — Ty, is the only one that “best approximates” the input type I = (A x B).
This means that there is one and only one most specific applicable branch for any
possible choice of I, i.e., in a well typed program no message-ambiguous error will
take place during the execution.

Let us stress that the above argument motivating the absence of message-
ambiguous holds not only for any static input type I, but also for any dynamic
input subtype I < I. In this case the set of input types of matching branches,
IT -, could become larger (IT; C IT;+), and so the best approximating branch



532 L. BETTINI, S. CAPECCHI AND B. VENNERI

TABLE 4. Typing rules: expressions, statements and bodies.

[Tauq C;S;Tkx:T'(x)
if z € VarsU {this}

Proj C;S;TFm:T'(m)
if m € MethNames
C;S;Tkexp, : Ty ... C;8;Tkexp,, : Th
NEW CFTI<B, ...C+T,<B,

C;S;T' + new A(exp;,...,exp,): A

if A€ dom(S)
and S(A) = ((f1 : vref Bui;...; fn:ref By))

READ C;S;T'Fthis.f :ref A
if S(D(this)) = (... f:ref A...)
C F D(this) < A

SUPER
C;S;T + super(4): A

C; S,F}—m : {[k — Tk} kekK
C;S;T'rexp: T
DOVMETHCALIL] C:S:THexp : T’

C;8;T F exp <= m(exp) : Ty o
if Ih = minkeK{Ik|C’ = (T X T/) S Ik}

C;S;Tkm: {I, — Ty} *€K
C;S;Tkexp: T
SOVMETHCALI] C:S:THexp : T’

C;S;T F exp «— m(exp’) : Th o
if Ih = minkeK{Ik|C = (T X T/) < Ik}

C;S; T left : ref A
C;S;Trexp: T
pssicy or T e

C;S;T' + left = exp: unit

C;S8;T F stmnty : T C;S;T F stmnty : U

BEQ
C; S;T' + stmnty; stmnty : U
C;S;Tkexp, : Ty ... C;8;TFexp, : Th
CFTW <A ...CHT, <A,
C;S;T Fstmnt: T C; ST Fexp: T’
Boby]
{ A1 21 = expy;...; Apn Tn = exp,;
C;S;T' + stmnt; 2T

return exp }
where IV = F[iﬂi — ref Ai] i€l..n
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TABLE 5. Typing rule for programs.

Vke Kj,jelJ
C; S;Txy, < ref By|[this «— A] F{body,} : Uy
C+ U < B,
;ST Fp: T
[PROGRAM-CLASY Cla;isf‘% ;;‘17 o An{
o m; branches
C; ST+ Bl (By ax){body, };*€ T
end’<’
bip

to be selected dynamically (minimum input type) could have a more specialized
input type. The existence and the uniqueness of such branch are still ensured by
condition (iiid) of well-formedness, as explained above.

Summarizing, the static well typedness property guarantees that, for each pos-
sible choice of dynamic input type:

1. the static return type is unique and preserved during evaluation;
2. there will always be one and only one most specialized branch to be se-
lected.

Formally, this property will be proved in Section 7 by providing a translational
semantics into A_object and then by lifting the type safety of A_object to DOCS.

Typing programs. Rule [PROGRAM-CLASY (Tab. 5) shows how the typing al-
gorithm proceeds in the case of a program, given the type environment (C, S, T).
This rule checks well typedness for multi-method definitions, namely that type
of each branch definition of m is consistent with the well formed multi-type that
is associated to m in I'. The body is type checked (rule Bopy], Tab. 4) in the
environment I updated with the types of the parameter and of this. Instead, the
correctness of inheritance w.r.t. fields (namely that all the fields of the superclasses
are repeated in the class definition), is assured by the consistency condition of the
triple (C, S,T') (see Def. 4.6).

We conclude this section with a basic property that characterizes the expressions
of DOCS, in particular their types.

Property 4.1. For any expression exp and body body,
1. if C;S;T'Fexp: T, then T'= A or T = ref A for some class name A;
2. if C; S;TF{body} : T, then T = A for some class name A.

Proof.

1. Straightforward by rules [Taut, NEW, READ, [DOVMETHCALI], SOV-
METHCALL].
2. By rule Bopy| and point 1. O
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4.5. WELL TYPEDNESS OF DOCS PROGRAMS

Well typedness of DOCS programs is expressed by the formula +— p : T' (read
as “p has type T”) where p is a program and T is an atomic type (i.e., T is well
formed w.r.t. any C).

The statement +— p : T is formalized in Definition 4.12 after the definition of
the class table CT(p) and the type environment I', that are associated to the
program p.

We first explain the use of CT(p) in checking the well typedness of DOCS
programs. In DOCS a method m in a class A can have a parameter of type B,
where class B is defined after the declaration of A; the same holds for types of
fields. This reflects the style of Featherweight Java: we view the set of class names
as being given from the beginning, so that there is no issue about which class is
defined first. Thus we have to collect the type information concerning all class
definitions in a program p, before checking each class. Given a DOCS program p,
CT(p) records, for each class A defined in p:

— the record type representing its fields;

— the subtyping relations (on atomic types) induced by the inheritance hi-
erarchy;

— the method definitions of the branches defined in A.

The third part of the table, recording the method definitions associated to each
class, will be used only to define DOCS semantics (Sect. 6).

Definition 4.7 (Class table CT).
Let p = classdef * body be a DOCS program, then

1. for any class definition in classdef * of the shape

class A : Ay,..., A, {
Bi fi; el
m; branches
By, (By xx){body, };"<"
end 7€/
};
we define:
= Cp(A) = ((fi : vef B; 1)),
- Sp(A)={A<A,...,A<A,};
- BT,(A,mj, By) = {body, };
2. CT(p) is the class table built from classdef * in the following way:

CT(p) = (Cp, Sp, BT,).

We assume that C'T(p) satisfies some sanity conditions:

— any class name A is defined only once;
—if A; < Aj € S, then Cp(A;) < Cp(A;), namely the subclass relation is
consistent with subtyping on the corresponding record types;
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— there are no cycles in the subclass relations recorded in CT(p), that is if
A < B € S, then B cannot be a subclass of A.

Similarly to S,, Cp, and BT}, we also need to generate the type environment I,
which associates to each multi-method m in p its multi-type 3. For example, let
us consider a program with the following class definitions:

class A{ class B{ class C: A, B{
m branches m branches m branches
T (D z){body }; T (D z){body,}; T (D z){bodys};
end end end

} } }

Then C, = {C < A,C < B}. The multi-type associated to m in class B, {(A x
D) — T,(B x D) — T}, is not well formed w.r.t. C, since it does not satisfy
condition (d) in Definition 4.5. The problem is due to the fact that, when we
check the branch defined in class B, we have not already encountered class C
which defines the disambiguating branch while C), already includes the relations
C<Aand C<B.

Thus we have to generate the environment I', in a preliminary scan of p, using
the function M'T(classdef *) which is a finite set of associations of the form {m; :
¥1,...,my : X, } where the subjects m;’s are method names belonging to classdef ™
and ¥;’s are multi-types possibly not well formed (pretypes). If m : ¥ belongs to
MT (classdef *) then MT(classdef *)(m) = X. Since each method name m can be
the subject of at most one association, we will write

MT (classdef *) U {m, : ¥.}

to denote
(MT (classdef *)\{m; : Z;}) U {m; : ¥/}

when updating MT.
We introduce two operators on multi-types that will be used for the construction
of MT:

— W merges two multi-types performing copy semantics of inheritance at the
typing level;
— | returns the branch types defined in a given class.

Definition 4.8 (Multi-method type union W). Given two multi-types ¥; and ¥y
and a type constraint system C', the new multi-type X1 W 29 is defined as follows:

Yo Yo =3 UXsU
((AXxD) T |(AixD)=TeSi ACHA<A Y.

Informally speaking the operator W copies each arrow type D — T defined in
a superclass A; into the subclass A (thus changing the receiver type) since every
branch not redefined in A is considered to be explicitly inherited.
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Definition 4.9 (Restriction |). If ¥ is a multi-type and A a class name, then
¥ | A selects from a multi-type ¥ the branch types where the type of the receiver
is A:

Y|A={B—-T|(AxB)—>TeXx}.

Definition 4.10 (MT).
Let classdef *= classdefi, . .., classdef,, be a set of class definitions then we de-
fine M'T (classdef *) by cases on the cardinality of classdef * as in the following:

1. MT(0) =0
2. MT(classdefi, . .., classdef,,) = MT(classdefy, . . ., classdef;, 1)U
{mj D Wra<a,) ren {(A X Bkj) — Tkj} kjeKj}Vj eJ

if

classdef, = class A : A, "SH{ . ; branchdef;; 7</};
and

branchdef; = m; branches T, (By, xx,;){body}, }; ki€Kjend
where

MT (classdef, . .., classdef,, _1)(m;)
Y= if m; € MethNames(classdefi, ..., classdef,_1)
(0 otherwise
provided that,
VieJandl,l'e H, ¥; | Ah N%; | Ay C{By, — Ty, WK}

Thus, at each recursive step, for each multi-method m; defined in the current
class, the type 3; of the multi-method class is updated as in the following (let us
note that ¥; = () if m; has not already been encountered):

Ej L‘H{ASA’L} heH {(A X Bkj) — Tkj kjeKj}

where:
— all the arrow types of the branches defined in the current class are collected
in the multi-type {(A x By;) — Ty, } ki €K,
— the union between the two multi-types is performed using the operator .
By using the operator W all the branches of a superclass are implicitly inherited by
derived classes, apart from those redefined by the derived class itself. For instance,
if the multi-method m has type 1 = {(A; X By) — T'} in the base class A; and
type Y2 = {(A2 x By) — T} in the derived class Ag, then it will be given the
type 21 H—J{AzﬁAl} 22 = {(Al X Bl) — T’7 (A2 X Bl) — T, (A2 X B2) — T}‘ This
corresponds to the intuition that branches that are not redefined in the subclass
are intended to be inherited. In the context of copy semantics it means that the
branch code that is inherited is copied down in the subclass: from the typing view
this branch is assigned the new type where the input type is updated replacing
the class where the branch has been defined with the current class.
Due to multiple inheritance, we have to check that two superclasses do not
define the same method branch with the same signatures, or, in case they do, we
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must ensure that the derived class provides a declaration for such branch, in order
to avoid ambiguities. Note that our policy is to avoid a silent resolution of such
ambiguities (as, e.g., in [38]) and to force the programmer to deal with them.

For instance, if m has type (A x D) — T in class A and type (B x D) — T
in class B and class C inherits both from A and B, then we must check that
the branch D — T is redefined in C in order to univocally associate a body to
the branch of m with type (C x D) — T. This check relies on the operators
of restriction (]) and intersection (N). The two operators are needed to collect
the set of common branches definitions for a multi-method m into two different
classes. Indeed, to catch ambiguities due to multiple inheritance for each pair of
superclasses A;, Ay we perform the following checks:

1. we select the branches defined in the two superclasses with the operator
b2 AL Xy | A
2. we collect the set of arrow types common to the two classes: ¥; | 4;NE; |
Ay
3. finally we check that the arrow types common to the two superclasses are
redefined in the current class X; | A;NX; | Ay C{By, — Ty, } ki €K;
Thus, the construction of X; is intended to fail if a method inherited by two
superclasses is not redefined.

Concluding, we stress on two distinctive features of our approach, concerning
the type checking of multi-methods definitions. First, we remark that with copy
semantics we obtain a less restrictive mechanism w.r.t. standard inheritance. Let
us consider the two following classes:

class A{ class B : A{
m branches m branches
T (B' 2){body, }; T (A’ 2){body,};
end end

} }
where B’ < A’, and let ¥ = {(Ax B') - T}, X9 = {(B x A") — T} be the types
of min A and B respectively. The multi-type ¥1UYXs = {(AxB') = T, (BxA’) —
T}, obtained by standard inheritance, is not well formed because there is no most
specific branch for the input type (B x B’), thus condition iii(d) of well formedness
on multi-types should be violated. With copy semantics of inheritance we obtain
a well formed multi-type:
21 H—J{BSA} 22 = {(A X B/) — T’7 (B X A/) — T, (B X Bl) — T}
Second, even if this mechanism is more flexible, we check inconsistencies due to
multiple inheritance, so we do not solve silently ambiguities that have to be ex-
plicitly solved by the programmer.
Using MT we can define the type environment I',.

Definition 4.11 (T',).
Let p = classdef * body be a DOCS program. Let C}, be defined as in Defini-
tion 4.7. Then I'), will denote the following environment:

I') = MT(classdef ™)
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if and only if for each association m : ¥ € MT(classdef *) then
Y €c, Types.

Definition 4.12 (Well typedness of DOCS programs).
Let p be a DOCS program. We say that p is well typed, denoted by — p: A,

—p: A= CySy Iy Fp: A for some A

where C},, Sp and I'), are defined in Definitions 4.7 and 4.11.

It is trivial to verify that (Cp, Sp, ') is a consistent environment by construction
of Cp, Sp and I',. Summarizing, the typing algorithm of a program p can be
described as a procedure performing two steps.

First we analyze the declarative part of the program collecting;:

— the subtype relations induced by the inheritance hierarchy (C));
— the record types associated to the classes (S,);
— the multi-type associated to each multi-method (T'p).

Then, the triple (Cp, Sp, '), produced in the first step, is used to type expressions
and bodies in the program. Namely:
— rule PROGRAM-CLASY checks method definitions relying on rule [Bopy];
— rule [BoDY| gives type to the main body of the program.

5. THE META-LANGUAGE A_object

In this section we briefly introduce A_object, a meta-language for reasoning
about properties of constructs of object-oriented languages introduced in [15].
A_object is essentially defined as an extension of the simply typed lambda calculus
to model basic object-oriented mechanisms. Since we want to represent DOCS into
A_object, we use an imperative version of A_object which is characterized by the
representation of the store S(it is sketched in [16], Sect. 9.1.2). Namely, special
typed identifiers id” will denote references to (addresses of) memory locations
holding values of type T (differently from variables 27" denoting values of type T').

Let us first discuss, in an informal way, two crucial ideas underlying A_object,
concerning the representation of objects and overloaded functions.

Objects. Let us consider a simple definition of a class A in DOCS:

class A{
int z = 0;
char y = ’a’;

=

This will correspond, in A_object, to the definition of an atomic type A that is
associated to the record type of its instance variables:

{x : ref int,y : ref char)).
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TABLE 6. A_object terms.

Expressions M = 7 |[Xa".M | M -M|e|M&"M | M e M | (M, M)
| super® (M) | in (M) | out” (M) | m (M) | 7a(M)

| id™ | 1M | M:=M | M; M | nil

Terms P

M|let A<A,..,Ain P |let A hide T in P

Let us note that  and y are mutable instance variables denoting memory locations
whose content can be updated by side effects. Indeed, the creation of an object of
a class A involves the allocation of free memory associated to fields x an y in an
exclusive way. To this aim two fresh identifiers, id;™ and idy™®* (of type ref int
and ref char, respectively) will be introduced at the moment of the creation of
an object, that will perform the following operations:

idllnt — 0’ Z-dQChar — ,a,; Z’IZA(<I' _ idllnt,y _ Z-d2char>)

where in“ is the constructor that is tagged by the type name A. Thus the object
in((x = id,™*,y := id2"®)) is the object formed only by the values stored in
id; and ido (its internal state) and by the tag A denoting its type. This approach
to the problem of object representation is a distinctive feature of A\_object w.r.t.
the record based model [13].

In order to access instance variables of objects we use the construct out? : A —
T which composed with in gives the identity. To select the jth field we use the
selection operator which returns the identifier associated to the selected field:

(fi = idP €Ny f; = id}”

out (inA((f; = idP* €1)).f; = id .

Overloaded functions. Overloaded functions are the A_object terms representing
multi-methods. An overloaded function is formed by a set of ordinary functions
(A-abstractions) each one constituting a different branch. Overloaded functions
are built as lists starting with an empty overloaded function denoted by ¢ and
concatenating new branches by means of &:

e& M &.. &M,

where M; = Az - N; and N; is a A_object expression representing the body of the
A abstraction (see Tab. 6) and M; ... M, correspond to the branches of a multi-
method. Furthermore, the & conjunctions are explicitly typed as well as all terms
of A_object: these types will be used to select the branch in method invocation
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and to type check multi-methods:
&M M &2 & M,

The branches are concatenated so that subtypes always precede supertypes; thus,
in the overloaded term e&™t M, &> My either T} and Th are unrelated or T) <
T> (see Sect. 6.2 for explanations of type ordering in overloaded functions). To
perform an application M e N, of the overloaded term M to an argument, we
first reduce N to a value (tagged with its type) and M to an overloaded term
€& M &™ ... &"™ M,,. Then the branch selection is performed according to the
tag of the argument, which is the actual type of the value obtained by reducing
N. This way, method call implements dynamic overloading.

In the following sections we summarize formal definitions of A_object that are
relevant for DOCS; we refer the reader to [16] for further details about A_object.

5.1. A_object: SYNTAX

First of all, A_object is not a language but a meta-language: this means that
it must have very few constructs in order to making proofs about languages as
simple as possible. For instance, records are not included in the syntax since they
can be completely encoded (see encoding of records by overloaded functions in [16]
Sect. 4.5.2). In the following sections we will explicitly use record and record types
only to simplify the presentation of our translation from DOCS to A_object. It is
clear that the language version using records and record types can be automatically
translated into the equivalent form not including them.

Terms in A_object are composed by an expression preceded by a (possibly empty)
suite of declarations (see Tab. 6)?. Since coerce” (M) is not interesting in our
context we do not consider it in the syntax.

Some notes about terms:

— super?(M): the type of M is upcast to A. In A_object super does not
necessarily appear in the receiver position but it is a first class value;

— 4d" is the identifier of a location of type ref T while | M is the content
of the location M;

— the declaration let A hide T in P declares the atomic type A and as-
sociates it to the type T used for its representation. This declaration is
coupled with the two constructors in® : T — A and out? : A — T.

A program in A_object is a closed term P different from e (since € is the empty
function, it makes no sense to consider it as a valid program since it could not be
used in any application).

2In [16] the syntax of tuples is (M, M) while here is (M, M) to distinguish it from record
notation.
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5.2. A_object: TYPING

The types in A_object are defined starting from a set of pre-types which is then
restricted to well formed types,

D == A|DxD

T == A|T—TI|(TxT)
| {D—T,...,D—T}|ref T| unit.
Let us note that the types of A_object are a superset of the types of DOCS (Sect. 4)
so we will use only a subset of A_object types®. The definition of the subtyping rela-
tion and of well typedness are the same as the ones defined for DOCS respectively
in Sections 4.2 and 4.3.

As for the language DOCS, the rules are parametric w.r.t. a type constraint
environment C' and a record environment S (see Sect. 4 for a definition of C' and
S). A-object typing rules are listed in Tables 7 and 8.

Notations. We will use I as in DOCS to denote a pair of atomic types (A x B)
and ¥ to denote a type of the shape {I; — T4, ..., I, — Ty, }.

The following definition is used to update a multi-type.

Definition 5.1 (Overloading composition).

{L—-T,....,->T,}e(I—-T)=
{Lh—-"T,....Li.1—Ti 1, Lix1 > Tig1,..., Iy = Ty, I = T}
if I =1;
{Il HTIa"wIn*)TnaIHT}
otherwise.

Remark 5.1. With respect to the method selection, the order of the type indexing
the & is crucial (see rule [}INTRQ and Definition 5.1 for the construction of the
types indexing the &’s). For instance, the two terms

G&Ml&{U_)V}Mg&{U_}V’U/_)V}Mg

and
G&Ml&{U*)V}MQ&{U’*}‘AU*)V}MB

where U’ < U, are both well typed but they behave differently if applied to an
argument of type U: in the first case we execute My, while in the second case we
execute Ms. This matter raises also in the semantics (interpretation) of DOCS
multi-methods (Sect. 6.2) where we will use a permutation operator to generate
the A_object multi-method branches in the correct order (Def. 6.5).

3 Note that unit is the type denoted as () in [16]. We preferred to adopt this notation for the
sake of readability.
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TABLE 7. A_object typing rules (part I).

[TauT C;SkaT T
C;S F M;:T; '
[RECORD| . ,
O3S b (fi=M; ") (fi: T ")
cC;SEM:U C;SHEN:V
PaTH
C;SF (M,N): (UxYV)
= g C;SHM:V
INTRS
C;SF " M:U—V
C;SFM:U—V C;SFN:T T<U
ELv
C;SEFM-N:V
[TAUT { C;Ske:{}
CiSFM:T, CHT<{T; -V} C;S+-N:Th, CHTo<T—V
[{}INTRd T,—V;} “€lp{T—-Vv il
C; S+ M&TTVIE T HTEVIN T L vy S g (T — VY
C; S+ M:{U; — Vitier C;SE N:U
{}ELM
C;SF MeN:V;
Uj = mineqr.. o {U:|U < Ui}
C;SUA:T)F P:U
NewTYPH
C;S Flet Ahide T'in P: U
A ¢ dom(S),T €c,s Types and T record type
OU(AS Ai)i:L“n;S EP:T
[ConsTRAINT]

C;SkFlet A< A,..., A, in P:T
if CF S(A) < S(A;) and A does not appear in C

5.3. A_object: OPERATIONAL SEMANTICS

A_object operational semantics is given by the reduction =; this reduction is
defined on configurations of the shape (C,S, M) where:

— C' is a type constraint system that is built along the reduction by the
declarations let A < A;....A, in P and that is used by the rules for the
selection of the branch;

— S is a global store associating identifiers id” to values:

— M is the A_object term to reduce.
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TABLE 8. A_object typing rules (part II).

C;SHM:B
SUPER =
C;S + super” (M) : A
Ct B < Aand Aec,s Types
C;S+ M:T
N —a
C;StEm (M): A
CHFT < S(A) and A €c,s Types
C;S+HM:B
Ourj 1
C; S F oout” (M) : S(A)
CrFB<Ae€c,s Types
IN11) C; SEnil : unit
ref INTRJ C;Skid" :ref T
C;S+E M:ref T
ref ELIM
C;SHEIM:T
C;SEM:refT C;SHFN:ULZT
[AssiaN
C;S F M := N : unit
C;SFM:U C;,SEN:T
BEQ

C;SEM;N:T

Values are terms that can be considered as acceptable result of an execution and
are defined as follows:
Gu=c|aT | \aT. M) | (M&TM) | nil | id™
(G,G) | super?(M) | in(M).
We call object values values of the shape in”(M). A tagged value is everything
an overloaded function can perform its selection on. The tag D can be either an
atomic type or a product of atomic types:
Tagged values GP = in” (M) |super”(M)|(G*,...,G*").

The axioms and rules of the operational semantics are listed in Tables 9 and 10,
respectively. Three axioms and a rule describe the behavior of out and give it access
to the internal state of an object. Three axioms and two rules describe overloaded
function application, denoted by e. We use D to denote the minieq1. o {1 Di|C
D < D;}. In an overloaded application, we first reduce the term on the left
to a &-term, where each term is a A-abstraction, taking into account that we
do not reduce inside A-abstractions; then the argument must be reduced to a
tagged value and, lastly, the application is performed according to the index of
the &-term. Thus, the overloaded application is implemented by a call-by-value
reduction. The standard (-rule is also formalized; in this case, the application
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TABLE 9. A_object operational semantics: axioms.

€, 8, m((Gh,...,Gu))) = (C,S,Gy)

(C, S, out™ (in2 (M))) = (C,S, M)

(C, S, out™ (super® (M))) = (C,S, out*(M))

(C,S,(MzT.M) - N)= (C,S,M[z := NJ)

(C, S, (M & Pr=T1Pn=Ta} £ o) 0 GP) = (C, 8, My ¢ GP)  if D,, # D
(C, S, (M &Pr=T1Dn=Tn} £ o) 0 GP) = (C, 8, My - ers(GP))  if D, =D
(C,8,let A< Ar..A, in P)= (CU(A< A)U..U(A<A,),S,P)
(C,8,let A hide T in P) = (C, S, P)

(C,S,idT = G) = (C,S[idT — G, nil)

(C,8,1id") = (C,S,8(id"))

(€. S8,G:M) = (C,S, M)

(denoted by -) can be reduced also when the argument is not in normal form.
However, in our context this is not an issue, since (-reduction is not involved in
the application of overloaded functions. When the tagged value is a super, the
super is used only for the selection while only the argument is passed to the
selected branch. To model the erasing of super we define the function ers which
removes the occurrences of super in a tagged value:

M if GP = super” (M)
ers(GP) = { (ers(GM),... ers(GAn)) if GP = (G{,...,Gan)
GP otherwise.

The declaration let A < A;...A, in P modifies the type constraint in which to
evaluate the body P. While let A hide T in P is used only by the type checker
to check P and thus is discarded in the semantics.

The operation S[z’dT «— @] either updates the association for id" in S, or
it introduces the new association if there is no association for id’ in S. Thus,
A-object does not have a specific ref operator in the syntax as, e.g., in [12,41]:
when in A_object we write id” := G with id fresh we mean the same behavior
of ref G (which allocates a brand-new cell in the memory, maps it to G and
returns the cell itself). When we dereferentiate an identifier, 14dT, we retrieve its
associated value in the store. For the sake of simplicity, we also avoid to introduce
the null references in the syntax, and then to formalize (and type) the run-time
error resulting from the evaluation of a reference that points to no object (for
a throughout treatment of null references we refer to [12]). In our context, the
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TABLE 10. A_object operational semantics: context rules (o
stands for both e and -).

(C,S, M) = (C', 8", M) (C,S, M) = (C',8',M")
(C, 8, out* (M)) = (C', 8, out™ (M")) (C,8,(G, M) = (C', 8, (G, M"))
(C,8,M) = (C',§, M) (C,8,M)= (C', 8, M)
(C,S,mi(M)) = (C',S',mi(M")) (C,S,(M,N)) = (C',S', (M',N))
(C,8,M) = (C',§, M) (C,8,M)= (C', 8, M)

(C,S,MoN)= (C',§',M' oN) (C,S,(N1&Nz) e M) = (C',S’, (N1&N2) e M")

(C,S, M) = (C', 8", M) (C,S, M) = (C',8',M")
(C,S,N := M) = (C",S',N := M") (C,8,M :=G) = (C",S',M' :=G)
(C,S, M) = (C',8', M) (C,S, M) = (C',8',M")
(C,8,M;N) = (C',S§',M'; N) (C,8,TM) = (C', 8", 1 M)

null-pointer error is represented by the attempt to evaluate T id? when id” has
not been previously initialized by a suitable tagged value (object). In this case,
S (z'dT) is undefined: this is the only way in which a computation of a well typed
program may get stuck, as formalized in the following theorems.

Definition 5.2 (=). We denote by = the reflexive and transitive closure of =.

Definition 5.3 (Normal form). Given a configuration (C,S, M), we say that M
is in normal form with respect to C' and § if (C,S,M) #. We say also that
(C,S, M) is a normal form configuration.

Definition 5.4 (Error configuration). If M is in normal form with respect to C
and S, and M contains a term 7 id” such that S(idT) is undefined, then we say
that (C,S, M) is an error configuration.

Theorem 5.1 (Subject reduction). Let P be a A_object program. If C;SEP : T
and (C,S,P) = (C",S', P"), for some(C’, S, S" and P’, then C'; S + P" : T' where
C'"=T'<T.

Theorem 5.2 (Progress). Let (C,S, M) be a normal form configuration such that
it is not an error configuration. If M is a closed term and is typed by a (possibly
unary) product of atomic types, then M is a tagged value.

The two above theorems show the standard type safety property for A_object.
We point out that their proofs are fully presented in [16] (Sect. 8.2) for the basic
calculus, that is A_object without the imperative part. However, the extensions
of both the proofs to our version of A_object are straightforward; we just need to
add a few cases, dealing with the imperative constructs, which do not present any
significant technical difficulty.
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6. SEMANTICS OF DOCS

We define the semantics of DOCS by translating DOCS into A_object. The
translation of DOCS expressions, statements, bodies (Sect. 6.1) and programs
(Sect. 6.3) is defined by using the interpretation function [];c, s,r,pry which returns
the A_object term associated to the argument. In particular, multi-methods are
translated into A_object overloaded functions (Sect. 6.2).

We define the translation from DOCS expressions, (statements, bodies and
programs) to Terms (the set of terms of A_object) using the function [[(c.s r,Br):

[[]](C,S,F,BT) : L — Envs — Terms

where

— L is the set of DOCS expressions, statements, bodies and programs;

— FEnwvs is a tuple of environments as defined in Section 4.4 plus the body
environment BT, mapping multi-methods’ definitions to class names;

— I" records the type of the identifiers and associates to self the current class,
as explained later.

In the following we define the notion of consistency for the tuple (C,S,T', BT').

Definition 6.1 ((C,S,T, BT) consistency). The tuple(C,S,T', BT is consistent
if

- (C, S,T) is a consistent environment according to Definition 4.6;
— if m branches ...end € BT then m € Dom(T).

Remark 6.1. We do not translate DOCS types into A_object types since, as
we noted in Section 5.2, DOCS types are a subset of A\_object types. The only
difference between DOCS and A_object types concerns multi-types: in A_object the
arrow types in a multi-type must be ordered according to the subtyping relation
on input types (in particular the types that tag the &, see Sect. 6.2 for details).
This ordering is relevant only for the semantics, in particular for the selection of an
overloaded term, but not for the typing. Thus, we did not consider this ordering in
DOCS since we only give the type system of DOCS, while, for semantics, we rely
on a translation into A_object; during this translation we must keep the ordering
of multi-types into account.

In a tuple (C,S,T',BT), C and S will be used only in the interpretation of
static overloading and object instantiation (see Def. 6.3), while BT will be used
only for the interpretation of multi-methods (see Def. 6.7). In particular, during
the interpretation of a DOCS term, C, S and BT will never change, while " will
change (e.g., during the interpretation of a method body). Thus, from now on,
for simplicity, when C, S and BT are not necessary, we will write only I' instead
of (C,S,T', BT), and [[r should always be intended as [](c,s,r,B7)-
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While defining the translation function [[(c s r pr) we will assume that
(C,S,T, BT) contains all the information needed to interpret DOCS programs.
Indeed, in Section 6.3 we define the translation of well typed DOCS programs
into A_object, thus (C,S,T', BT) will contain all the informations collected while
checking the declarative part of programs.

6.1. INTERPRETATION OF EXPRESSIONS, STATEMENTS AND BODIES

We first introduce an auxiliary function, deref, that deals with references.

Definition 6.2 (Definition of deref function). Given a DOCS expression, exp,
the function deref ([exp]r) is defined on the syntax of exp:

— deref ([x]r) T[[:U]]p if T(z) = ref A for some A
— deref ([this. f]r) =1 [this. f]r
— deref ([exp]r) = exp]]p in all other cases.

In some sense, the function deref is the semantics counter- and complementary
part of the ref destructor operator in the type system (Def. 4.1) and returns the
content of mutable instance variables.

In the following we define the translation (interpretation) of expressions, state-
ments and bodies into \_object.

Definition 6.3 (Interpretation of DOCS expression, statements and bodies). We
define the translation of expression, statements and bodies as in the following:
1. [=z]r = :cr(m)
[m]r = m"t™)
[this]r = selfr(thls)
[this. fJr = (outT(this) (5o T (this)y) ¢
[[recewer — m(exp)]]w,SI,BT) = [m]r e (deref ([receiver]r),
super® (deref ([esp]r))) )
for some A such that C; S;I'Fexp: T and A=T
6. [receiver <= m(exp)]r = [m]r e (deref ([receiver|r), deref ([exp]r))
7. [{A1 z1 = expy;...; Ap ©y = exp,;stmnt;return exp}r =
idy = deref ([expyr); . . .; id,* == deref ([exp,,]r);
(™ot A g, vef An) [stmnt]p; [return exp]r) - (idy A" .. id,, ")
where IV = I'[zy « ref Aq]...[x, < ref A,]
and idq,...,1id, are fresh identifiers.
8. [new A(exp; ‘") ic,s,r,pr) = id;"" = deref ([exp;]r) *';
n((fi = id; ") €T
if S(A) = ((f; : ref B; *€1)) where id;’s are fresh identifiers.

BRI

12.

9. [super(A)]r = super”([this]r)

10. [left = exp]r = [left]r := deref ([exp]r)

11. [stmnty; stmnte]r = [stmntq]r; [stmnts]p
[

return exp|r = deref ([exp]r).
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‘We note that:

— in field selection (4) out unpacks self into a record and it selects its f
component;

— a method invocation ((5), (6)) is translated in an application of an over-
loaded function: thus, in the operational semantics of the translated term,
the selection of the right branch is driven by the dynamic type of both
the receiver and the static (5) or dynamic (6) parameter exp (see Tab. 9).
Note that, in the case of static overloading, we force the argument to its
static type; in order to do this we need the type of the argument as in-
ferred by the type system. In this case case we need to refer to the type
system (C, S and I'). This corresponds to the fact that static overloading
method selection is made at compile time;

— a DOCS body (7) is composed by a (possibly empty) sequence of local vari-
able declarations and initializations A; 1 = exp;;...; A, x, = exp,, a
(possibly empty) sequence of statements and a return. The corresponding
A_object term is a A-abstraction

Mar™ 412, A . [body]r

applied to the fresh identifiers idi ... id, " initialized with the evalu-
ation of the corresponding expressions: thus, idi ML id, M will replace
the occurrences of the DOCS variables z1,...,x, in the first step of the
evaluation of the A_object term obtained by translation. As a consequence,
during evaluation, we will manage only identifiers id” instead of DOCS
variables and the store S will associate to id” values of type A according
to rule (C, S, id? = G) = (C’,S[idA — @G, nil);
— the creation of an object (8) is translated in:

e a sequence of assignments of the shape id;”" = deref ([exp,Jr) to
assign to each identifier id; ' the evaluation of the i'* argument ex-
pression;

e the construction of an object of type A using the in operator with a
record which associates to each field f; the corresponding identifier
id;.
Thus, as in point (7), we will manage identifiers id® instead of field labels,
during the evaluation of the translated terms. As in the previous case all
the identifiers are fresh, thus each object will have its own state.

6.2. INTERPRETATION OF MULTI-METHODS

DOCS multi-methods are translated into A_object overloaded functions. We
briefly discuss the informal idea and some crucial points, before giving the formal
definitions.
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Let us consider, for example, the following class definition:

class A{
m branches
T (B z){body, };
T (C x){body,};
end

}

Then, the multi-method m will be translated into the following A_object over-
loaded function:

e&AXB)=T \(self 4, 2B) - M,

&{(AXB)*)T,(AXC)*)T})\(SGZJCA, :EC) - My

where each branch of the multi-method is translated in a A-abstraction (M; and
Ms are the A_object terms obtained by translating the definition of the bodies of
the related branches). The M-abstraction has parameters selfA (which represents
the receiver of the message, this is translated into self A) and ¢ (which represents
the parameter of type C' of the method) and A denotes the current class.

All the A-abstractions are then concatenated through the conjunctions & which
are tagged with the type of the corresponding branch (the one on the right of &).
When tagging the conjunctions with the multi-type a problem arises. Suppose we
have three classes A, B and C' with C' inheriting both from A and B. Suppose also
that a branch with type parameter D for multi-method m is defined both in A and
B; then by conditions of well formedness on multi-types we need to redefine the
branch also in C' (see condition (iiid) in Def. 4.5). In DOCS the simplest solution
is to define the branches in A and B and then to add the branch to C' at the
moment of C' definition:

class A{ class B{ class C: A, B{
m branches m branches m branches
T (D x){body, }; T (D z){body,}; T (D z){bodys};
end end end

} } }

Hence, the corresponding translation of m in A_object would be:
& AXD)=T ) (self A 2P . M,
&{(AXD)—»T,(BxD)—»T})\(selfB, ID) - My

&{(A><D)—>T,(B><D)—»T,(CxD)—»T})\(selfc'7 xD) - M;
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where My, M> and M3 are the A_object terms obtained by translating the bodies
of the branches of method m.

However, in the above overloaded term the second type index ({(4 x D) —
T,(B x D) — T}) is not well formed since it does not satisfy condition (d) in
Definition 4.5: if we consider the input type (C' x D) there is not a most specific
branch applying. The problem is due to the fact that, when we translate the branch
defined in class B, we have not already encountered class C: for this reason the
branch written to solve ambiguities due to multiple inheritance has to precede at
least one of the branches of its direct ancestors®. Indeed, the following overloaded
term is well formed:

& OXD)=TY )\ (selfC D) - My
&{(CXD)—>T,(BxD)—»T})\(SelfB, xD) - M,
&{(CXD)—»T,(B><D)—»T,(A><D)—>T})\(self/-l7 xD) - M,

where the A-abstractions are concatenated in an ascending order w.r.t. the subtyp-
ing relation on the pair type of the A-abstraction. Concluding, in order to build
well typed overloaded functions (namely overloaded functions where all the &’s
are indexed with well formed multi-types) we need to concatenate the branches in
a suitable order.

Thus, to translate DOCS multi-methods we have to scan the program from
the bottom to the top to build well typed overloaded terms using the following
functions:

— M([plic,s,r,pr)(m) returns the overloaded term associated to the message
m by the definition in p;

— T[p](m) returns the (pre)type that indexes the & concatenating the
branches of the translation of m. Obviously, if p is well typed we expect
that

Mplic,s,r,ry(m) : T[p](m) (see Lem. 7.5);

Summarizing, every method is translated in a A-abstraction (always parame-
terized over self A where A is the class of the receiver), and method names, i.e.,
messages, become identifiers of these functions. So, in A_object each method actu-
ally becomes a function parameterized also over the receiver object®.

4The technical reason of this problem concerns the features of the A& calculus (on which
A_object is based): A& totally lacks of the notion of time. Atomic types are given all at once and
there is no perception of the temporal dependence of type definitions. Further comments on this
topic can be found in [18].

5This makes A_object pretty close to implementations of mainstream object-oriented lan-
guages where methods are basically translated into functions where the implicit object, this, is
implicitly passed as the first parameter, see, e.g., [31].
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Now, let us consider the case of an invocation of the multi-method m and its
translation (Def. 6.3):

[new C(...) < m(new D(...))]r =
[m]r o (deref ([new C(...)]r), deref ([new D(...)]r)) =
[mlr o (in©(),in" () =
&M OXDI=TY )\ (self € D). My
&A(CxD)=TL(BXD) =T} \ (51 B, 5D) My

&{(CXD)HT,(BXD)*)TA,(AXD)*)T})\(SGZJCA’ :L'D).Ml ° (inC()’ ZTLD())

According to the semantic rule for overloaded function application (see Tab. 9),
the branches of the function are scanned until the input of the last element indexing
the & coincides with the type of the input (condition D = D,, in the semantic
rule); then, in the example, the selected branch is )\(selfc, xP). M3 since the input
type is (C x D).

This will gives to the invocation of m the expected behavior. Indeed, in a
direct operational semantics of DOCS the rule for multi-method invocation would
be very simple (see, for instance, [33]):

1. extract the set of the associated implementations of m matching the type
of the receiver and the parameters;

2. choose the most specific one in the above set;

3. evaluate the chosen implementation in the suitable context.

Our interpretation into A_object, mapping the multi-method in an overloaded func-
tion and its invocation in an application term, formalizes and implements the above
operational rule in a typed A-calculus.

Finally, we remark that:

— DOCS typing rules guarantee that there always exist one and only one
most specialized branch to be selected (see Sect. 4.4) w.r.t an input type I;

— the translation into A_object guarantees that the body of this most spe-
cialized version is associated to the branch of the overloaded function in
which the last arrow type (indexing the &) has input type I (see Defs. 6.6
and 6.7).

Now we formally define the interpretation function M after some auxiliary
definitions.

Auxiliary definitions. The functions 7 and M use the auxiliary function F to
implement copy semantics of inheritance. Given a class name A and a method
name m, F (A, m) returns a set of branch types (A; x By,) — T, where A; is either
A or a superclass of A in the hierarchy and By — T} is the type of a branch
definition of m in A;. So, the branch types collected in this set are both the
ones inherited and the ones defined in A, abstracting away from branches that
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are specifically introduced by copy semantics inheritance. Indeed F(A,m) scans
the branches of m defined in A and recursively all the superclasses of A, thus
the program p containing the definition of A (and its superclasses) is an implicit
parameter of . However, we shall omit such argument since it will be always clear
from the context. Note that F(A, m) is simply a set of types (which may not be
well formed) and not a multi-type. For this reason we denote with MultiTypes
the codomain of F, instead of Types.

Definition 6.4 (Definition of F and L).

Let
p=class A : A, "€H{
Ci fiz !
m; branches Ty, (Bk, xx;){body;, }; ki€K; end 7€/
b

then the function
F : (ClassNames x MethodNames) — MultiTypes

is defined as follows:

f(A,mj) = {(AXBkJ)HTkJ kjeKj}U
{(An x Be) = Ty [(Ap x Be) — Ty € F(Ap,my),h € H L & K;}

where ¢ ¢ K; assures that the branch B, — T} is not defined in class A.
Moreover,

L(F(A,m)) = {0] (A; x By) — Ty € F(A,m)}

L(F(A,m)) permits accessing the types of the signatures of branch definitions
of m in the hierarchy of A. By definition of F, we have the following property:

Property 6.1. Let A be a class name and m a method name, then for each
(A; x B;) — T; € F(A,m), we have:
— either 4; = A and there is a branch of m in A with type B; — Tj or;
- A< A, and (A; x Bj) — T; € F(A;,m) and for each (Ay, x B)) — T} €
F(A,m)if A; < A and ¢ # k then | # j.

This property ensures that we collect all the types of the branches defined in a
class and all the most redefined versions inherited from superclasses (that are not
redefined by the class itself).

The following definition of permutation orders the types within multi-types in
ascending order according to the subtype relation, i.e., leftmost arrow types are
those with smallest input types. This is a crucial issue to guarantee that multi-
method selection will work correctly (see Rem. 5.1).

Definition 6.5 (Permutation). Given an overloaded type {I, — T),} "<H,
denote by {I,n) — Ton)} h€H the type obtained applying to the indexes the

permutation o that orders the Ij,’s in such a way that Ij, < I = o(h) < o(k).

we
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We now define 7, M to build multi-types. We assume that the type environ-
ment I" associates to each multi-method m in p its equivalent multi-type 7 [p] (m).

Definition 6.6 (Definition of 7).

Let
p=class A : Ay h€H{
Cy f '
m; branches Ty, (By, 1,){body; }; *<%i end /<7
hip'

then we define
T[[pl]] (m.]) D (A X Ba(l)) - o’(l)@' . @(A X Ba(n)) — Lo(n)
if m = m; for some j € J and L(F(A,m;)) ={1,...,n
Thlm =] (F(A,my) = (L.}
otherwise
where L(F (A, m;)) is defined in Definition 6.4 and & in Definition 5.1.

T[-](m) is the function that returns {} in all the other cases.

Summarizing, for each multi-method declaration, in each class definition, 7°
performs the following steps:

1. it lists the arrow types of the branches defined in the class and in its super
classes for a multi-method m; using L(F (A, m;));

2. for each arrow type collected in point (1) it replaces, in the input type, the
first element of the pair with the type of the current class: this substitution
implements copy semantics of inheritance at typing level;

3. it orders the arrow types so collected according to an ascending order on
the parameter types w.r.t. subtyping relation: this is done by applying
the permutation ¢ on the indexes of the second elements of the input type
pairs;

4. finally, it concatenates the resulting multi-type to the multi-type obtained
by translating the rest of the program (7 [p'](m)), namely to remaining
class definitions. The concatenation is performed through the operator .

Let us note that the multi-type obtained by the function 7 [p](m) is the same
multi-type that I', associates to m in DOCS typing. The only difference is that
the arrow types in the multi-type 7 [p] (m) are ordered while in DOCS typing the
order of arrow types in a multi-type is not relevant (Rem. 6.1). For instance, if
we have three branches for the multi-method m in class A with parameters B,
By and Bs (and return type B’), where By < By < By, since 0(3) < 0(2) < o(1),
then the types indexing the & will be generated in this order: {(A x Bs) — B'},
{(AxBs) — B',(AxBy) — B’} and {(Ax B3) —» B, (Ax By) — B, (Ax B;) —
B’}. Since conditions of well formedness on multi-types do not rely on the order
of arrow types in multi-types (indeed multi-types are sets), it is easy to verify that
if (Def. 4.5) I'y(m) is well formed also 7 [p](m) is well formed. Thus, from the
typing point of view, I',(m) and T [p](m) can be considered equivalent.

Property 6.2. Let p be a well typed DOCS program, then VYm € MethNames(p),
T[p](m) is well formed.
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Proof. By contradiction, it is easy to show that if 7[p](m) is not well formed,
then p cannot be well typed. O

In the following we define the function M that is devoted to translate multi-
methods of a program into overloaded functions of A_object.

Definition 6.7 (Definition of M). Let
p=class A : Ay h€H{
Ci f; !
m; branches Ty (B, xx,;){bodyy, }; ki €Ki end 7€/
by
be a DOCS program. We define M[p](c,s,r,pr)(m) as follows:

1. if m = m; for some j € J, then let
L(F(A,m;)) ={1,...,n} and
f(A,mj) = {(DBl X Bl) — Tl, ey (DBn X Bn) — Tn}’
where each Dp, is either A or one of its superclasses. Then,
Mplic,s,r,Bry(m) =
(.. Mp'lic.s.r.BTy(M)
&T[[pl]](m)ea{(AXBo(l))_’Tcr(l)}

A(self A, B - [BT (m;, Dp, .y Bo))Irithis— Az, )< By )]

&T[[p']] (m)®...0{(AXBo(n-1))—=To(n-1) }B{(AXBs(n)) = Ton) }

)\(selfA, xBa(n)) . [[BT(mJa DBg(n)f Bg(n) )]]F[this%A,za(n)&Ba(n)]))
2. M[plic,s,r,Br)(m) = M[p'Jr(m) otherwise
3. finally, MH(C,S,F, pry(m) is the function that returns e in all the other
cases.

M builds the overloaded term associated to each multi-method defined in a
DOCS program. Each branch declaration in a class A is translated in a \-
abstraction. The body of the A-abstraction is obtained using the body table BT
(see Def. 4.7). Note that M searches for the definition of the branch body using
the class where the method has been originally defined. In this way, if the method
is inherited from a superclass, the body is “copied” in the current class. Finally,
the A-abstractions are concatenated by & (using the permutation o).

In the definition of M we did not consider (mutually) recursive methods. The
definition of M can be easily extended to cope with recursive methods, using the
fix-point technique as suggested in [15], but it is not particularly relevant in our
context so we skip this technicality that would only make proofs more complex.
Note, however that the definition of 7 do not need to be changed.

6.3. SEMANTICS OF DOCS PROGRAMS

We define the interpretation of any program p, Q(p), as a composition of the
interpretation of its main body and multi-methods, in the specific environment
(Cp, Sp,T'p, BT}) induced by the declarations of p.
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Definition 6.8 (Type environment I'z,). Let p be a DOCS program. Then we
define the type environment I'z,] as follows:

Lrgpp = {m: T[p](m) | m € MethNames(p)}.

For simplicity, since 'z, is equivalent to the environment I';, used to type
check DOCS programs (see Def. 4.11), modulo the order of arrow types in multi-
types (namely I'zp,p(m) = T'y(m) ¥m € MethNames(p)), from now on we will
use I'y to denote I'z,p. This abuse of notation will simplify the proof of main
properties.

Now, we can define the interpretation of programs.

Definition 6.9 (Interpretation of DOCS programs). Let p = classdef * body be
a well-typed DOCS program, and

classdef* = class Ap : Aq,..., An {
C; fi§ i€lp,
m; branches
Ti (Bi wi){body,}; "
end’€/n
yihet

Then we define

de )
Q(p) L [body](c, s,.r, .51, [m;" (™) == M[plic, s,.r, 51, (M;)]
for each j € J, and h € H

To clarify the use of the type environment I',, we remark a key aspect of the
translation of DOCS multi-methods into A_object overloaded functions. Let us
consider the following code:

class A{
m branches
T (B z){body, };
end
¥
class B{
n branches
T (B z){body,};
end
¥
The method m defined in class A has a branch with parameter of type B. When
translating programs in A_object, methods definitions are put “inline” with meth-
ods declarations (see Def. 6.7). The problem is that the body of the branch
A::m(B x) uses the method n defined in class B, which has not already been
translated. Thus, n ¢ Dom(I') and cannot be interpreted into A_object (indeed
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[n]r=n"(). We adopt the following solution:

— we first build the multi-types associated to each multi-method defined in
a program p with the function 7 [p](m;) (see Def. 6.6);

— the multi-types 7 [p](m;) are collected in the environment I',, which is
used by the translation function €.

From an algorithmic point of view, the translation of a DOCS program p into Q(p)
can be seen as a procedure consisting of the following steps:

1. the prescan of the declarative part of p (classdef *) constructs
(Cp, Sp, Ty, BT,), and associates to each method name m in p its (ordered)
multi-type 7 [p](m);
2. the interpretation of the program translates the main body of p using
(Cp, Sp, I'p, BTp);
3. the interpretation of multi-methods into overloaded functions associates to
each multi-method name m"»(™) the \_object term M{p] (Cy.S,.T,,BT,) (M)
(this step scans again the program p from the beginning since it works on
the declarative part). Finally, each method identifier mPr(™) is replaced by
Mlplie,.s,.r,.B1,) (M)
The semantics of p is intended to be defined as the operational semantics of the
A_object term Q(p), according to the rules of Tables 9 and 10 (Sect. 5.3).

Definition 6.10 (Semantics of DOCS programs). Let p be a well-typed DOCS
program. The semantics of p is the evaluation of the A_object term (p), starting
from the type constraints C, and an empty store, i.e.,

(Cp, 0, 2(p))-

Let us note that in [15] the type constraint system C used in the evaluation of a
program is built along the reduction by the declarations let A < Ay,..., A, inp
(indeed, the evaluation of a program starts from an empty C). In our case, instead,
since we need (), to translate the program into a A_object term, we avoid the
generation of all the let’s: these would only generate a type constraint system
equal to Cj,.

7. DOCS 1S TYPE SAFE

In this section we prove that any well typed DOCS program is translated into
a well-typed A_object program, namely, types are preserved upon translation (type
preservation). Thus, type safety of A_object results in an indirect proof of type
safety for the language DOCS (Theorem 7.1). In particular this proves the cor-
rectness of DOCS typing rules.

Type safety for DOCS programs, formalized in Theorem 7.2, relies on:

— type preservation under translation for expressions and statements
(Lem. 7.2);
— type preservation under translation for bodies (Lem. 7.3);
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— type preservation under translation for programs (Thm. 7.1);
— type correctness of the substitutions
[m; "o () .= Mplic, s, 1,57, (m;) 7] used in the interpretation
(Lem. 7.5).
Lemma 7.1 (Type of deref). Let exp be a DOCS expression. Then for every
consistent environment (C,S,T', BT

if C;S;TFexp:T then C;S  deref([exp]ic,sr Br)) : T.

Proof. By structural induction on exp. The only interesting case is exp =
methinvok:

deref ([methinvok]r)=[methinvok]r =* [return exp]r = deref ([exp]r);

then the result follows from the induction hypothesis. O

Lemma 7.2 (Type preservation for expression and statements). Let ¢t be a well
typed DOCS expression or statement. Then for every consistent environment
(C,S,T, BT)

if C;8TFt:T then C;SF [thesrsr:T.

Proof. By structural induction on t. Let us consider the case t = receiver <
m(exp’).
By rule DOVMETHCALL we have:
~ C;8;TFm: {I — Uy} <K,
- C;S;T'Freceiver: T
- C;8;Trexp : T;
- Ih = minkeK{Ik|C - (T X /’1‘;) < Ik}
[receiver < m(exp')[r = [m]r o (deref ([receiver]r), deref (Jexp']r))
Then we have:
= C; Sk [m]r : {Iy — Uy} *5;
— C; St [receiver]r : T by induction hypothesis;
- Ih = minkeK{Ik|C - (f X /’fﬁ) < Ik}
Then, the thesis follows from the A_object rule {}ELIM.
The case t = receiver < m(exp’) is similar. The other cases are trivial. O

Lemma 7.3 (Type preservation for bodies). Let
{A1 1 = expy;...; An x, = exp,;stmnt;return exp}
be a DOCS body. Then for every consistent environment (C,S,T', BT if:
C;S;T F {4 21 = expy;...; An ®y, = exp,;stmnt;return exp}: T
then

C;S F [{A1z1 = expy;...;An 2, = exp,;stmnt;return exp}]c srpry: T
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Proof. [{A1 1 = expy;...; An ©n = exp,;stmnt;return exp}|r =
Aaymef A g, vef An) [stmnt]p; [return exp]r (id, 2 .. id, 7).
By DOCS rule Bopy| and Lemma 7.2 we have C; S+ [stmnt]r; [return exp]r: :
1.
The thesis comes from A_object rules [INTRO and [ELIM 4. O

The following lemma is a technical step for proving Lemma 7.5: it states that
the types of the branches of the overloaded function M[p]c s,r,p7)(m) have the
same types labeling the conjunctions &.

Lemma 7.4 (Well typedness of M branches). Let p be
class A : A, el {
Ci fi; el
m; branches T, (By, x,){bodyy, }; ¥ end 77
by
be a well typed DOCS program. Let M[p]c,sr,51)(m;)
Mplic.s.r.5r)(m;) =

[r'](c,s,r,51)(m;)
&I T1(m)&{(AxBo))—Toq)}

)\(S@lfA, ng(l) ) : [[BT(m_]7 DBG(I) ) Bo’(l))]]F[this%A,za(l)HBa(l)]

&I 1)@ &{(AXBy(n-1))=To(n—1) }B{AX By (1)) =T (n) }

A(self A, aBo) - [BT (my, D, Ba(n)INthis— Ao () Bocy)))
be the interpretation in A_object of the methods defined in class A according to
Definition 6.7, where
L(F(A,m;)) ={1,...,n} and
f(A,mj) = {(DB1 X Bl) —Ty,..., (DBW, X Bp) — Tn}
where each Dp, is either A or one of its superclasses.
Then:

C; S = Aself *,2P).[BT (mj, Dp,, B))]rithis—a.n— 5, : (Ax By) — T
for each l € {o(1),...,0(n)}.
Proof. The body of each lambda abstraction is built by
[BT(mj, Dp, ., B)lrithis— A5 = [Pody]rithis— A,z B]-

Since p is well typed we have C;S;T'+ body : U with U < T} (from DOCS rule
[PROGRAM-CLASY). By Lemma 7.2. C; S+ [body]rithis—a,c—m,] : U. The result
comes from A_object rule [>INTRJ. O

Now, in order to guarantee that the substitutions
[m;T» () = M([plic, s, r,.57,) (m;) 7] preserve well typedness we have to
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prove that M[p]c, s,.r, Br,)(m;) has type T [p](m;) for all j € MethNames(p),
since I'y(m;) = T [p] (m;).

Lemma 7.5 (Type correctness of method translation). Given a well typed DOCS
program. p

—p:T (ie.,Cp; SpiTp Fp:T)

then for each m € MethNames(p)

Cp; Sp = Mlplic,.s,.r,.81,) (M) : Tp](m).

Proof. By induction on the cardinality N of classdef *.

— (N =1), then p is defined as in the following
p=class A :{
Ci fi; !
m; branches Ty (By, xi){body,}; *¢%i end /&7
}; body
The thesis is proved by induction on the number n of the branches of
Mlplc,.s,.r,.B1,)(m;) (which coincides with the cardinality of the set
L(F(A,my))).
e The base case (n = 0) is trivial.
e Let us assume Vi < n M[p]ic, s,.r,,B1,)(m;): 7 [p](m;); then we
want to prove that

Mlplc,.s, r,.B1,)(m;) : T[p](m;)

where m; has n+1 branches. The result comes from A_object rule
[}INTRQ, Lemma 7.4, the induction hypothesis and by using the
definition of
M[[P]](C,S,F,BT> (m;) and Tpl (m;).
- (N>1)
p=class A : A "eH{
Ci fi5 icl
m; branches Ty (By x1){body,}; *¢¥i end 7€/
by
We have to prove that, Vj € J:
Mlplic,sr.pry(m;) =
(- Mlp'lie,s,r,B1)(m;)
&T[[pl]](m)ea{(AXBo(l))_’Tcr(l)}

A(self A, B - [BT (m;, Dp, 1y Bo))Irithis— Az, )< By )]

&Tﬂp/]] (m)EB'"@{(AXBa(n—l))‘) a(n—l)}@{(AXBU(W))*’TU(W)}

)\(selfA, xBU(n)) : [[BT(m_]; DBU(,L) 5 Bo’(n) )]]F[thiS%A,CEU(n)%Ba(n)] ))
is of type 7 [p](m;), where
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L(F(A,m;)) ={1,...,n} and
F(A,m;) ={(Dp, x B1) = T1,...,(Dp, X Bp) = Ty}
where each Dp, is either A or one of its superclasses.
By induction hypothesis C; S+ M[p']ic, s,.r,.81,)(m5) + T[p'](m;).
Then the proof proceeds as in the previous case. O

Theorem 7.1 (Type preservation under semantic translation). Let p be a well
typed closed DOCS program. Then

Cp; Sp; Ty Ep:r A implies Cp; Sy, F Q(p) 1 A
Proof. Let p = classdef * body. Then:
—p: A=Cp; Sy Fpr A by definition

=Cp; Sp; 'y Fbody : A by iterate application of DOCS
rule [PROGRAM-CLASY.

=Cyp; Sp F[bodylic,.s,.r,.B1,) + A by Lemma 7.3.

=Cy: Sy F[bodylic, s,.r,,51,)[m; ™) == M[plic,.s,.r,.51,) (m;) 17] : A
by Lemma 7.5 and by
the substitution property
of A\_object, [15]

that is, Cpp; S, FQ(p) : A by Definition 6.10. O

If Q(p) is well typed, then the execution of Q(p) cannot result in a run time type
error, because A_object is type safe. We recall that, in a well typed program p, all
local variables are initialized and, when creating an object, suitable expressions
are provided to initialize all the fields of that objects. As a consequence, during
the translation of p into A_object, any creation of a fresh identifier id” will be
associated to an assignment for id”. Thus, taking into account the semantics of
the assignment operation, we can conclude that the computation starting from
Q(p) cannot produce an error configuration, and then the execution of p never
gets stuck.

Theorem 7.2 (DOCS is type safe). The execution of a well typed (closed) DOCS
program p cannot result in a type error.

Proof. If p is well typed (— p : T') then Q(p) is well typed (Cp; S, FQ(p) : T') by
Theorem 7.1. The execution of 2(p), according to the operational semantics of
A_object, cannot produce run time type errors by type safety of A_object. O
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8. RELATED WORKS

Various languages have been proposed to study multi-methods with dynamic
overloading. CLOS [9] is a class-based language with a linearization approach to
multi-methods: they are ordered by prioritizing argument position with earlier
argument positions completely dominating later ones. This automatic handling of
ambiguities may lead to programming errors. In Dylan [38] methods are not en-
capsulated in classes but in generic functions which are first class objects. When a
generic function is called it finds the methods that are applicable to the arguments
and selects the most specific one. BeCecil [20] is a prototype based language with
multi-methods. Multi-methods are collected in first-class generic function objects
which can extend other objects. Even if this language is object-based, it provides
a static type system, scoping and encapsulation of all declarations; however, its
approach, being object-based is radically different from our class-based setting.
Fortress [2] is an object-oriented language supporting methods within traits [37]
and functions defined outside traits. It also provides components (units of compi-
lation) which contain declarations of objects, traits and functions. Fortress differs
from mainstream languages since it is not class-based. Parasitic multi-methods [6]
are a variant of the encapsulated multi-methods of [7,16] applied to Java. This ex-
tension is rather flexible and indeed provides modular dynamic overloading. The
goal of modularity has influenced many aspects of the design: method selection
is asymmetric; parasitic methods are complicated by the use of textual order of
methods in order to resolve ambiguities for selecting the right branch; all methods
must be declared in the class of the receiver in order to eliminate class depen-
dences. MultiJava [21] is an extension of Java that supports multi-methods by
using open classes (classes to which new methods can be added without editing
the class directly) and multi-methods.

Concerning core languages and calculi, we can compare DOCS to FJ [29]:
DOCS models a set of features that are in between a minimal core language as F.J
and a concrete language. Indeed, while F'J abstracts the functional core of Java,
DOCS abstracts the imperative part by integrating in this core advanced features
that language extension experiments can rely on. Note that, passing to a version
of DOCS with less powerful features is straightforward.

KOOL [16] integrates multi-methods and overloaded functions (external to
classes) in a functional kernel object-oriented language in a type safe way. KOOL
type system and its semantics by translation into A_object were the starting point
to build DOCS; indeed the notion of well formedness for DOCS types is widely
inspired by the one defined in [16]. Both KOOL and DOCS aim at being light and
compact in presenting kernel object-oriented features, however, they are quite dif-
ferent since they have two different goals. KOOL includes both encapsulated multi-
methods and overloaded functions external to classes (not included in DOCS) thus
unifying in a single language two different styles of programming. As it is explained
n [16] (Sect. 3.5) KOOL aims at defining a formalism in which to study the fea-
tures of object-oriented programming so the choice in the design was “to keep the
language small simple and easily comprehensible but keep it from being a realistic
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programming language”. For this reason KOOL omits imperative features in its
presentation (although Chap. 9 of [16] introduced imperative features that we ex-
tended). On the other hand DOCS is designed to study the interaction of complex
mechanisms in a context as close as possible to real languages so we include im-
perative features; we also allow forward declarations in methods class definitions,
namely, we let the programmer write a method with a parameter of type A in a
class no matter if the class A is defined before or after the current class. This
feature (included in mainstream languages such as Java and C++), which is not
supported by KOOL, influenced the typing of DOCS: first the declarative part is
checked producing a class table which is used to type check method declarations
and definitions. Finally, KOOL does not interpret overloading by copy semantics,
so many multi-method definitions which are well typed in DOCS are discarded
in KOOL. Thus DOCS allows a less restrictive overloading resolution policy still
maintaining the primary goal of type safety.

[19] presents a polynomial-time static type checking algorithm that checks the
conformance, completeness, and consistency of a group of method implementations
with respect to declared message signatures. This result can be used also in our
approach to address the efficiency issue of the typing procedure.

Tuple [32] is a simple object-oriented language designed to integrate multiple
dispatch in single dispatching languages by adding tuples as primitive expressions.
Tuple is statically typed and it is proved to be type safe. In Tuple methods can
be defined either inside classes or in tuple classes (external to standard classes).
Message look-up on methods defined in a tuple supports dynamic overloading:
messages are sent to tuples of arguments dynamically involved in method selec-
tion. There are some key differences between Tuple and DOCS. First, Tuple sup-
ports dynamic overloading only for methods external to classes thus adopting a
mechanism which is closer to multiple dispatching languages. As a consequence in
Tuple the distinction between static and dynamic overloading is made at method
definition while in DOCS it is deferred at the time of method calls thus increasing
flexibility.

Dubious [33] is a core calculus designed to study modular static type checking of
multi-methods in modules. Dubious is classless and includes multi-methods with
symmetric dispatch in the form of generic functions defined in modules that can be
checked separately and then linked in a type safe way. In [33] several type systems
are discussed in order to find the right balance between flexibility and type safety.
Dubious and DOCS share some basic goals such as the symmetry of dispatch, a
clear policy for ambiguities resolution (avoiding linearization of parameters or of
superclasses) and static type safety. On the other hand the two languages are
totally different since DOCS is based on classes and does not address the issue of
separate type checking.
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9. CONCLUSIONS

In this paper we presented DOCS (Dynamic Overloading with Copy Semantics),
an object-oriented imperative kernel language, including basic features of many
mainstream programming languages, combined with advanced features: multiple
inheritance, dynamic overloading and copy semantics. Indeed, DOCS gives a
type-based foundation to dynamic overloading with copy semantics. We defined a
translational semantics of DOCS into the meta-language \_object [15,16].

Therefore, DOCS can be thought of as a formal framework to design and de-
velop language extensions and to prove theoretical properties of such extensions.
For instance, we exploited this framework to study and implement an extension
of C++ with dynamic overloading in [8], where dynamic overloading is imple-
mented by using only dynamic binding and static overloading. This extended
C++ has been implemented and the correctness of this implementation has been
proven using the semantics of DOCS (the implementation is freely available at
http://doublecpp.sf.net/).
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