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Abstract. The algebraic counterpart of the Wagner hierarchy con-
sists of a well-founded and decidable classification of finite pointed
ω-semigroups of width 2 and height ωω. This paper completes the
description of this algebraic hierarchy. We first give a purely algebraic
decidability procedure of this partial ordering by introducing a graph
representation of finite pointed ω-semigroups allowing to compute their
precise Wagner degrees. The Wagner degree of any ω-rational language
can therefore be computed directly on its syntactic image. We then
show how to build a finite pointed ω-semigroup of any given Wagner
degree. We finally describe the algebraic invariants characterizing every
degree of this hierarchy.
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Introduction

In 1979, Wagner defined a reduction relation on ω-rational languages by analyz-
ing the graphs of their underlying Muller automata. The collection of ω-rational
languages ordered by this reduction is nowadays called the Wagner hierarchy, and
was proven to be a well-founded and decidable partial ordering of height ωω [21].
But the Wagner hierarchy also coincides with the restriction of the Wadge hier-
archy [20] – the most refined hierarchy in descriptive set theory – to ω-rational
languages, and therefore refines considerably the very lower levels of the Borel hi-
erarchy. The Wagner reduction thus corresponds to the Wadge or the continuous
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reduction; but it also coincides with the sequential reduction – a reduction de-
fined by means of automata – on the class of ω-rational languages ([16], Thm. 5.2,
p. 209).

The Wagner hierarchy has been thoroughly investigated since then. Wilke
and Yoo described an efficient algorithm computing the Wagner degree of any
ω-rational language in polynomial time [23], and Selivanov proposed a purely de-
scriptive set theoretical formulation of this hierarchy [18].

The present series of papers is concerned with the algebraic approach to ω-
rational languages. In this context, Pin introduced the structure of an ω-semi-
group [16] (extensions of semigroups equipped with an infinite product) as an
algebraic counterpart of Büchi automata, and Wilke was the first to prove that ω-
rational languages are also exactly the ones recognized by finite ω-semigroups [22].
These algebraic structures present some relevant properties: for instance, the ex-
istence of a minimal ω-semigroup recognizing a given ω-rational language – the
syntactic image of this language; they also reveal interesting classification prop-
erties, for example an ω-language is first-order definable if and only if it is rec-
ognized by an aperiodic ω-semigroup [13,15,19], a generalization to infinite words
of Schützenberger and McNaughton’s famous result. The problem of classifying
finite ω-semigroups in such a refined way as Wagner did for ω-rational languages
thence appeared naturally.

Carton and Perrin [2–4], and Duparc and Riss [8] studied an algebraic descrip-
tion of the Wagner hierarchy in connection with the theory of ω-semigroup. But
their results still fail to provide an algorithm that computes the Wagner degree of
an ω-rational language directly on a corresponding ω-semigroup, and in particular
on the syntactic ω-semigroup of this language.

These two papers provide an algebraic description of the Wagner hierarchy. In
the first paper of this series, we gave a construction of the algebraic counterpart of
the Wagner hierarchy. We defined a reduction relation on finite ω-semigroups by
transposing Wadge games from the ω-language to the ω-semigroup context, and we
proved that the collection of finite pointed ω-semigroups ordered by this reduction
was precisely isomorphic to the Wagner hierarchy – namely a decidable partial
ordering of height ωω. The present paper completes this description. We first
expose a decidability procedure based on a graph representation of finite pointed
ω-semigroups. This algorithm can therefore compute the Wagner degree of any
ω-rational language directly on its syntactic image, and consists of a reformulation
in this algebraic context of Wagner’s naming procedure [21]. We then show how
to build a finite pointed ω-semigroups of any given Wagner degree. We finally
describe the algebraic invariant characterizing the Wagner degree of every finite ω-
semigroup. These invariants are also a reformulation in this context of the notions
of maximal ξ-chains presented in [8], or maximal μα-alternating trees described
in [18], or also maximal binary tree-like sequences of superchains described in [21].
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1. Preliminaries

1.1. Ordinals

We refer to [11,12,14] for a complete presentation of ordinals and ordinal arith-
metic. We simply recall that, up to isomorphism, an ordinal is just a linearly
ordered well-founded set. The first infinite ordinal, denoted by ω, is the set of all
integers, and the ordinal ωω is defined as sup{ωn | n < ω}. Any ordinal ξ strictly
below ωω can be uniquely written by its Cantor normal form of base ω as follows:

ξ = ωnk · pk + · · · + ωn0 · p0,

for some unique strictly descending sequence of integers nk > . . . > n0 ≥ 0 and
some pi > 0, for all i. We finally recall that the ordinal sum satisfies the property
ωp + ωq = ωq, whenever q > p.

This paper only involves ordinals strictly below ωω and we choose to present
an alternative characterization of those ones. The set of ordinals strictly below ωω

(that is ωω itself) is isomorphic to the set

Ord<ωω = {0} ∪
⋃
k∈N

(
N\{0} × N

k
)

– that is the set containing the integer 0 plus all finite nonempty sequences of inte-
gers whose left most component is strictly positive – equipped with the following
ordering: 0 is the least element and given any two sequences α = (a0, . . . , am), β =
(b0, . . . , bn) ∈ Ord<ωω , then

α < β if and only if

{
either m < n,

or m = n and α <lex β,

where <lex denote the lexicographic order. This relation is clearly a well-ordering.
For instance, one has (7, 3, 0, 0, 1) < (1, 0, 0, 0, 0, 0) and (7, 3, 0, 0, 1) < (7, 3, 1, 0, 1).
As usual, given such a sequence α, the ith element of α is denoted by α(i). For
example, if α = (3, 0, 0, 2, 1), then α(0) = 3 and α(3) = 2.

Every ordinal ξ < ωω can then be associated in a unique way with an element
of Ord<ωω as described hereafter: the ordinal 0 is associated with 0, and every
ordinal 0 < ξ < ωω with Cantor normal form ωnk · pk + · · ·+ ωn0 · p0 is associated
with the sequence of integers ξ̄ of length nk + 1 defined by ξ̄(nk − i) being the
multiplicative coefficient of the term ωi in this Cantor normal form. The sequence
ξ̄ is thence an encoding of the Cantor normal form of ξ. For instance, the ordinal
ω4 · 3 + ω3 · 5 + ω0 · 1 corresponds to the sequence (3, 5, 0, 0, 1). The ordinal ωn

corresponds the sequence (1, 0, 0, . . . , 0) containing n 0’s. This correspondence
is an isomorphism from ωω into Ord<ωω , and from this point onward, we will
make no more distinction between non-zero ordinals strictly below ωω and their
corresponding sequences of integers.
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In this framework, the ordinal sum on sequences of integers is defined as follows:
given α = (a0, . . . , am), β = (b0, . . . , bn) ∈ Ord<ωω , then

α + β =

{
β if m < n,

(α(0), . . . , α(n − m − 1), α(n − m) + β(0), β(1), . . . , β(n)) if m ≥ n.

For instance, one has

(7, 3, 1, 2, 5) + (1, 0, 0, 0, 0, 0) =
( 7, 3, 1, 2, 5)

+ (1, 0, 0, 0, 0, 0)
= (1, 0, 0, 0, 0, 0)

,

(7, 3, 1, 2, 5) + (4, 0, 3) =
(7, 3, 1, 2, 5)

+ ( 4, 0, 3)
= (7, 3, 5, 0, 3)

,

(7, 3, 1, 2, 5) + (5, 0, 0, 0, 1) =
(7, 3, 1, 2, 5)

+ (5, 0, 0, 0, 1)
= (12, 0, 0, 0, 1)

.

As usual, the multiplication by an integer is defined by induction via the ordinal
sum.

A signed ordinal is a pair (ε, ξ), where ξ is an ordinal strictly below ωω and
ε ∈ {+,−,±}. It will be denoted by [ε]ξ instead. Signed ordinal are equipped
with the following partial ordering: [ε]ξ < [ε′]ξ′ if and only if ξ < ξ′. Therefore
the signed ordinals [+]ξ, [−]ξ, and [±]ξ are all three incomparable.

Given an ordinal 0 < ξ < ωω with Cantor normal form ωnk · pk + · · ·+ ωn0 · p0,
the playground of ξ, denoted by pg(ξ), is simply defined as the integer n0. When
regarded as a sequence of integers, the playground of ξ is the number of successive
0’s from the right end of ξ. For instance, pg((2, 4, 0, 5, 0, 0)) = 2. Finally, given
a signed ordinal [ε]ξ with ε ∈ {+,−} and Cantor normal form ξ = ωnk · pk +
· · · + ωn0 · p0, a cut of [ε]ξ is a signed ordinal [ε′]ξ′ < [ε]ξ satisfying the following
properties:

(1) ξ′ = ωnk · pk + · · · + ωni · qi, for some 0 ≤ i ≤ k and qi ≤ pi;
(2) if ni = n0, then ε′ = ε if and only if pi and qi have the same parity;

whereas if ni > n0, then ε′ ∈ {+,−} with no restriction.
If ξ is regarded as the sequence of integers (a0, . . . , an), a cut of [ε]ξ is a signed
ordinal [ε′](b0, . . . , bn) < [ε](a0, . . . , an) satisfying the following properties:

(1) there exists an index i such that: firstly, bj = aj , for each 0 ≤ j < i;
secondly, bi < ai; thirdly, bj = 0, for each i < j ≤ n;

(2) if pg(a0, . . . , an) = pg(b0, . . . , bn) = p, then ε′ = ε if and only if an−p and
bn−p have the same parity; whereas if pg(a0, . . . , an) �= pg(b0, . . . , bn), then
ε′ ∈ {+,−} with no restriction.

For instance, the successive cuts of the signed ordinal [+](2, 0, 3, 0) are [−](2, 0, 2, 0),
[+](2, 0, 1, 0), [+](2, 0, 0, 0), [−](2, 0, 0, 0), [+](1, 0, 0, 0), and [−](1, 0, 0, 0). As an-
other example, the cuts of the signed ordinal [−](4, 2, 0, 3, 0) are all listed below
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by decreasing order (i.e. [ε]ξ can access [ε′]ξ′ iff [ε]ξ > [ε′]ξ′).

[−](4, 2, 0, 3, 0)
↙

[+](4, 2, 0, 2, 0)
↘

[−](4, 2, 0, 1, 0)
↙ ↓

[+](4, 2, 0, 0, 0) [−](4, 2, 0, 0, 0)
↓ ↙↘ ↓

[+](4, 1, 0, 0, 0) [−](4, 1, 0, 0, 0)
↓ ↙↘ ↓

[+](4, 0, 0, 0, 0) [−](4, 0, 0, 0, 0)
↓ ↙↘ ↓

[+](3, 0, 0, 0, 0) [−](3, 0, 0, 0, 0)
↓ ↙↘ ↓

[+](2, 0, 0, 0, 0) [−](2, 0, 0, 0, 0)
↓ ↙↘ ↓

[+](1, 0, 0, 0, 0) [−](1, 0, 0, 0, 0)

1.2. Semigroups

We refer to [17] for all basic definitions concerning semigroups, Green preorders
≤L,≤R,≤H, as well as their corresponding equivalence relations L,R,H. Given a
semigroup S, the set of idempotents of S is denoted by E(S), or simply by E when
the semigroup involved is clear from the context. The restriction of the preorder
≤H to the set E(S) is a partial order, called the natural order on E(S) [16,17],
and denoted by ≤. If S is a finite semigroup, there exists an integer π such that,
for each s ∈ S, the element sπ is idempotent [17]. The least integer satisfying this
property is called the exponent of S.

A pair (s, e) ∈ S2 is called a linked pair if se = s and e is idempotent. The
elements s and e are respectively called the prefix and the idempotent of the linked
pair. The set of all prefixes of linked pairs of S is denoted by P (S), or simply by
P if the semigroup involved is clear from the context. The set of idempotents
associated with a given prefix s is defined by E(s, S) = {e ∈ E(S) | se = s}, and
is also simply denoted by E(s) when there is no ambiguity. Moreover, two linked
pairs (s, e) and (s′, e′) of S2 are said to be conjugate, denoted by (s, e) =c (s′, e′),
if there exist x, y ∈ S such that e = xy, e′ = yx, and s′ = sx. The conjugacy
relation between linked pairs is an equivalence relation [16], and the conjugacy
class of a linked pair (s, e) will be denoted by [s, e].

In [16], Chapter II - 2 fully describes the specific properties of infinite words
over finite semigroups. We recall some of these useful results. If α = (xn)n∈N

and β = (yn)n∈N are two infinite words of a semigroup S, then β is said to be a
factorization of α if there exists a strictly increasing sequence of integers (kn)n≥0
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such that y0 = x0 · · ·xn0−1 and yn+1 = xkn · · ·xkn+1−1, for each n ≥ 0. The next
proposition tightly binds infinite words over finite semigroups to linked pairs.

Proposition 1.1 (see [16], pp. 78–79). Let S be a finite semigroup, and (sn)n≥0

be an infinite sequence of elements of S. Then there exist a linked pair (s, e) ∈ S2

and a strictly increasing sequence of integers (kn)n≥0, such that s0s1 . . . sk0−1 = s
and sknskn+1 . . . skn+1−1 = e, for all n ≥ 0.

In this case, the infinite word (sn)n≥0 is said to be associated with the linked pair
(s, e). In a finite semigroup S, there exists an infinite word which can be associated
with different linked pairs if and only if these linked pairs are conjugate [16]. This
property ensures the existence of a surjective mapping from the set of infinite
words onto the set of classes of linked pairs of S, which maps every infinite words
to its associated conjugacy class.

1.3. ω-Semigroups

We refer to [16] for basic definitions and results concerning ω-semigroups.
We recall that ω-rational languages are exactly those recognized by finite ω-
semigroups [16,22]. Hence in this paper, we particularly focus on finite
ω-semigroups, and it is proven in [16] that every finite ω-semigroup S is entirely
and uniquely determined by the infinite products of the form πS(s, s, s, . . .), de-
noted by sω. More precisely, given a finite ω-semigroup S = (S+, Sω), and an
infinite sequence (si)i∈N of elements of S+, one has πS(s0, s1, s2, . . .) = seω, for
any linked pair (s, e) associated with (si)i∈N in the sense of Proposition 1.1 – the
value of this infinite product is indeed independent of the associated linked pair
chosen [16]. We then have the following consequence:

Lemma 1.2. Let S = (S+, Sω) be a finite ω-semigroup, and let α and β be infinite
words of Sω

+ such that β is a factorization of α. Then πS(α) = πS(β).

Proof. Let (s, e) be a linked pair of S2
+ associated with β. Therefore πS(β) = seω.

Since β is a factorization of α, then (s, e) is also associated with α. Therefore
πS(α) = seω = πS(β). �

In addition, we recall that the definition of a pointed ω-semigroup can be
straightforwardly adapted from the definition of a pointed semigroup: a pointed
ω-semigroup is a pair (S, X), where S is an ω-semigroup and X is a subset of
S. The definitions of ω-subsemigroups, quotient, and division can then be easily
reformulated in this pointed context. Given a pointed ω-semigroup (S, X), with
S = (S+, Sω) and X ⊆ Sω, and given an element u of S+, we set uX = {uα ∈
Sω | α ∈ X}, and u−1X = {α ∈ Sω | uα ∈ X}.

Finally, a pointed ω-semigroup (S, X) will be called Borel if the preimage
π−1

S (X) is a Borel subset of Sω
+, where Sω

+ is equipped with the product topology
of the discrete topology on S+. Notice that every finite pointed ω-semigroup is
Borel, since its preimage by the infinite product is ω-rational, hence Borel (more
precisely Boolean combination of Σ0

2) [16].
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2. The SG-hierarchy

Let (S, X) and (T, Y ) be two pointed ω-semigroups, where S = (S+, Sω) and
X ⊆ Sω, and T = (T+, Tω) and Y ⊆ Tω. The game SG ((S, X), (T, Y )) [1] is
an infinite two-player game with perfect information, where Player I is in charge
of X , Player II is in charge of Y , and players I and II alternately play elements
of S+ and T+ ∪ {−}, respectively. Player I begins. Unlike Player I, Player II is
allowed to skip her turn by playing the symbol “−”, provided she plays infinitely
many moves. After ω turns each, players I and II produced two infinite sequences
(s0, s1, . . .) ∈ Sω

+ and (t0, t1, . . .) ∈ T ω
+ , respectively. The winning condition is

given as follows: Player II wins SG ((S, X), (T, Y )) if and only if πS(s0, s1, . . .) ∈
X ⇔ πT (t0, t1, . . .) ∈ Y . From this point forward, the game SG ((S, X), (T, Y ))
will be denoted by SG(X, Y ) and the ω-semigroups involved will always be known
by the context. A play of this game is illustrated below.

(X) I : s0 s1 · · · · · · after ω moves−→ (s0, s1, s2, . . .)
↘ ↗

(Y ) II : t0 · · · · · · after ω moves−→ (t0, t1, t2, . . .).

A player is said to be in position s if the product of his/her previous moves
(s1, . . . , sn) is equal to s. A strategy for Player I is a mapping σ : (T+ ∪{−})∗ −→
S+. A strategy for Player II is a mapping σ : S+

+ −→ T+∪{−}. A winning strategy
for a given player is a strategy such that this player always wins when using it.
Notice finally that a player in charge of the set s−1X is exactly as strong as a
player in charge of X but having already reached the position s.

The SG-reduction over pointed ω-semigroups is defined via this infinite game as
follows: we say that (S, X) is SG-reducible to (T, Y ), simply denoted by X ≤SG Y ,
if and only if Player II has a winning strategy in SG(X, Y ). As usual, we then set
X ≡SG Y if and only if both X ≤SG Y and Y ≤SG X , and X <SG Y if and only
if both X ≤SG Y and X �≡SG Y . An ω-subset X is called self-dual if X ≤SG Xc

and non-self-dual otherwise. The relation ≤SG is reflexive and transitive, hence
≡SG is an equivalence relation.

The collection of Borel pointed ω-semigroups1 ordered by the ≤SG-relation is
called the SG-hierarchy, in order to underline the semigroup approach. Notice that
the restriction of the SG-hierarchy to Borel pointed free ω-semigroups is exactly
the Borel Wadge hierarchy. When restricted to finite pointed ω-semigroups, this
hierarchy will be called the FSG-hierarchy, in order to underline the finiteness of
the ω-semigroups involved2 . The SG-games over Borel ω-subsets are determined,
and as a corollary, one can prove that, up to complementation and SG-equivalence,
the SG-hierarchy is a well-ordering. Therefore, there exist a unique ordinal, called
the height of the SG-hierarchy, and a mapping dSG from the SG-hierarchy onto its

1 i.e. pointed ω-semigroups with Borel ω-subsets.
2 Since every finite pointed ω-semigroup is Borel, the FSG-hierarchy contains all finite pointed

ω-semigroups.
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Figure 1. The SG-hierarchy.

height, called the SG-degree, such that dSG(X) < dSG(Y ) if and only if X <SG Y ,
and dSG(X) = dSG(Y ) if and only if either X ≡SG Y or X ≡SG Y c, for every
Borel ω-subsets X and Y . The wellfoundedness of the SG-hierarchy ensures that
the SG-degree can be defined by induction as follows:

dSG(X) =

{
0 if X = ∅ or X = ∅c,
sup{dSG(B) + 1 : B <SG A} otherwise.

The SG-hierarchy was proven to have the same familiar “scaling shape” as the
Borel hierarchy or the Wadge hierarchy: an increasing sequence of non-self-dual
sets with self-dual sets in between, as illustrated in Figure 1, where circles represent
the ≡SG-equivalence classes of Borel ω-subsets, and arrows stand for the <SG-
relation.

The ω-subsets involved in finite pointed ω-semigroups are necessarily Borel,
so that the FSG-hierarchy is actually a restriction of the SG-hierarchy. More
precisely, in the first paper of this series, the FSG-hierarchy was proven to be the
exact algebraic counterpart of the Wagner hierarchy in the following sense:

Theorem 2.1. The Wagner hierarchy and the FSG-hierarchy are isomorphic.

The isomorphism was indeed given by the mapping associating every ω-rational
language with its syntactic pointed image. As direct consequences, the FSG-
hierarchy has height ωω, and it is decidable. This paper provides a detailed de-
scription as well as a decidability procedure of this hierarchy.

In this context, the following results present a useful game theoretical character-
ization of the self-dual and non-self-dual ω-subsets. We first need to introduce the
following notions. Given a finite ω-semigroup S = (S+, Sω), an ω-subset X ⊆ Sω,
and two elements s, e ∈ S+: we say that s is a prefix position if s is a prefix of
some linked pair of S2

+; we say that e is a waiting move for the prefix position s if
(s, e) is a linked pair; we say that s is a critical position for X if s−1X <SG X .
We finally define the imposed game SG( , ), very similar to SG( , ), except that
Player I is allowed to skip his turn, provided he plays infinitely often, whereas
Player II is not allowed to do so, and is forced to play from one prefix position to
another. This infinite game induces the reduction relation ≤SG defined as usual
by X ≤SG Y if and only if Player II has a winning strategy in SG(X, Y ).

The following results prove that an SG-player is in charge of a self-dual ω-
subset if and only if s/he his forced to reach some critical position for this set.
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Equivalently, an SG-player is in charge of a non-self-dual ω-subset if and only
if s/he has the possibility to indefinitely remain as strong as in her/his initial
position. As a corollary, we show that every self-dual set can be written as a finite
union of <SG-smaller non-self-duals sets.

Lemma 2.2. Let S = (S+, Sω) and T = (T+, Tω) be two finite ω-semigroups, let
X ⊆ Sω and Y ⊆ Tω, and let s be a prefix of a linked pair of T 2

+. Then

X ≤SG s−1Y if and only if X ≤SG s−1Y.

Proof.

(⇐) Notice that Player II is more constrained in the SG-game than in the SG-
game. Hence, if Player II has a winning strategy in SG(X, s−1Y ), then
she also has a winning strategy in SG(X, s−1Y ).

(⇒) In the game SG(X, s−1Y ), we may assume that Player II is in charge of
the subset Y , and is already in the prefix position s in the beginning of
the play. Now, given a winning strategy σ for Player II in SG(X, s−1Y ),
we describe a winning strategy for Player II in SG(X, s−1Y ). For that
purpose, let a0, a1, a2, . . . denote the subsequence of non-skipping moves
played by Player I in SG(X, s−1Y ), and let bi = σ(a0, . . . , ai) be the
answers of Player II in the other game SG(X, s−1Y ), for all i ≥ 0. Then,
while I begins to play his very first successive moves, II first waits in her
initial prefix position s by playing an idempotent e such that se = s. As
soon as I’s moves induce an answer b0 · · · bm such that b0 · · · bk−1 = s′,
bk · · · bm = e′, and (s′, e′) is a linked pair, then II either stays in (if s′ = s)
or reaches position s′. She then waits in this position by playing the
idempotent e′ until I’s moves induce another finite word b0 · · · bn, with
n > m, such that b0 · · · bm+i = s′′, bm+i+1 · · · bn = e′′, i ≥ 0, and (s′′, e′′)
is a linked pair. As before, she either stays in or reaches position s′′

by playing the element (bm+1 · · · bm+i), when it exists, and waits in this
position for another similar situation by playing the idempotent e′′. And so
on and so forth. Proposition 1.1 shows that this configuration is forced to
happen again and again along the play, so that this strategy is well defined.
In the end, the infinite word played by Player II is a factorization of the
infinite word b0b1b2 . . ., and Lemma 1.2 shows that these two infinite words
have the same image under the infinite product πT . Since σ is winning for
Player II in SG(X, s−1Y ), the strategy described above is also winning for
II in SG(X, s−1Y ). Therefore X ≤SG s−1Y . �

Proposition 2.3. Let S = (S+, Sω) be a finite ω-semigroup, and let X ⊆ Sω.
The following conditions are equivalent:

(1) X is non-self-dual.
(2) X ≤SG X.
(3) There exists a prefix s of a linked pair of S2

+ such that X ≡SG s−1X.
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Proof.
(2) ⇒ (1) Given a winning strategy σ for Player II in SG(X, X), we describe

a winning strategy for Player I in SG(X, Xc): Player I first plays σ(−),
and then applies σ to Player II’s moves. He wins.

(1) ⇒ (2) Conversely, given a winning strategy σ for Player I in SG(X, Xc), we
describe a winning strategy for Player II in SG(X, X): she first computes
the moves σ(ε), σ(−), σ(−,−), σ(−,−,−) . . ., and plays the first of these
elements which is a prefix position. Notice that such a move always exists,
since S+ is finite. From this prefix position, she then applies σ to Player I’s
moves, but restricts herself to playing from one prefix position to another,
exactly as described in Lemma 2.2. She wins the game.

(3) ⇒ (2) Given any element s ∈ S+, the relation s−1X ≤SG X always
holds. Indeed, the winning strategy for Player II consists in first playing
s, and then copying Player I’s moves. The relation X ≡SG s−1X is thus
equivalent to X ≤SG s−1X , and Lemma 2.2 ensures that X ≤SG s−1X if
and only if X ≤SG s−1X , for any prefix s. Thus, given a prefix s and a
winning strategy σ for II in SG(X, s−1X), we describe a winning strategy
for II in SG(X, X): she plays s and then applies σ.

(2) ⇒ (3) Assume that X �≡SG s−1X , for every prefix s of S+. This means
that, for every prefix s, Player I has a winning strategy σs in the game
SG(X, s−1X). We then describe a winning strategy for Player I in the
game SG(X, X): Player I skips his first move; Player II’s answer is forced
to be a prefix position s, by definition of the SG-game; then, Player I
applies σs, and wins. �

Corollary 2.4. Let S = (S+, Sω) be a finite ω-semigroup, and let X ⊆ Sω. If
X is self-dual, then X =

⋃
s∈I sYs, for some subset I ⊆ S+, and some family of

non-self-dual ω-subsets (Ys)s∈I satisfying Ys <SG X.

Proof. Let X ⊆ Sω be self-dual, and let I be the set of prefixes of linked pairs of S2
+.

We observe that X =
⋃

s∈I s
(
s−1X

)
. Now, since X is self-dual, Proposition 2.3

ensures that s−1X <SG X , for every prefix s ∈ I. Moreover, for every prefix
s ∈ I, there exists an idempotent e such that (s, e) is a liked pair. Since se = s,
one has s−1X = (se)−1X = e−1(s−1X), thus in particular s−1X ≡SG e−1(s−1X).
Moreover, since e is a prefix of the linked pair (e, e), Proposition 2.3 shows that
the set s−1X is non-self-dual, for all s ∈ I. This concludes the proof. �

By the previous corollary, the self-dual ω-subsets of finite ω-semigroups can
be expressed as finite unions of translations of strictly smaller non-self-dual sets.
Hence, in order to exclusively concentrate on the non-self-dual sets, we consider
a modified definition of the SG-degree which sticks the self-dual sets to the non-
self-dual ones located just one level below it.

dsg(X) =

⎧⎪⎨
⎪⎩

1 if X = ∅ or X = ∅c,
sup {dsg(Y ) + 1 | Y n.s.d. and Y <SG X} if X is non-self-dual,
sup {dsg(Y ) | Y n.s.d. and Y <SG X} if X is self-dual.
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3. Describing the FSG-hierarchy

3.1. Finite semigroups as graphs

In this section, we describe a graph representation of finite semigroups by focus-
ing on specific positions in, and moves of the SG-game. The notion of a linked pair
is essential to this description. As a consequence, every SG-play induces a unique
path in the graph inherited from the semigroup involved. From this point onward,
the set S+ denotes a fixed finite semigroup. We recall that P and E respectively
denote the sets of prefixes and idempotents of S+.

Linked pairs satisfy the following game theoretical properties. First of all,
Proposition 2.3 shows that any SG-player in charge of a non-self-dual ω-subset
can restrict her/himself to only reaching prefix positions. Also, an SG-player can
stay indefinitely in a position s if and only if s is a prefix. S/He does so by
playing idempotents in E(s). Finally, for every s ∈ P , each idempotent e of E(s)
corresponds to some specific waiting move for the prefix position s. These specific
positions and moves yield two preorders on the sets of prefixes and idempotents
of linked pairs.

Firstly, we consider the restriction of the preorder ≤R to the set of prefixes P ,
also denoted by ≤R without ambiguity. By definition, this preorder satisfies the
accessibility relation s ≥R s′ if and only if there exists x ∈ S1

+ such that sx = s′,
for all s, s′ ∈ P . As usual, one has s >R s′ if and only if s ≥R s′ and s′ �≥R s,
and also s R s′ if and only if s ≥R s′ and s′ ≥R s. This preorder can be naturally
extended to the set of R-classes of prefixes P/R by setting s̄ ≥R t̄ if and only
if there exist s′ ∈ s̄ and t′ ∈ t̄ such that s′ ≥R t′, for all s̄, t̄ ∈ P/R. The pair
(P/R,≥R) is therefore a partial ordering.

Secondly, we consider the natural order on idempotents, denoted by ≤, and
defined as the restriction of the preorder ≤H to the set E. It satisfies the absorption
relation e ≥ e′ if and only if ee′ = e′e = e′ holds, for all e, e′ ∈ E. As usual, one
has e > e′ if and only if both e ≥ e′ and e′ �≥ e hold. The pair (E,≥) is also a
partial ordering [16].

These two relations satisfy the following properties, central in the description
of an SG-play. Firstly, a player can move from the prefix position s to the prefix
position s′ if and only if s ≥R s′. He can go from s to s′ and back to s if and
only if s R s′. Secondly, a player which forever stays in the prefix position s by
playing infinitely many e’s and f ’s in E(s) produces an infinite play α of the form
(s, e, f, f, e, f, e, e, . . .). If e ≥ f , since the f ’s absorb all the e’s, the infinite word
(s, f, f, f, . . .) is a factorization of α, and Lemma 1.2 ensures that πS(α) = sfω.
Therefore, only the ≤-least idempotents that are played infinitely often in a given
prefix position are involved in the final acceptance of the play.

The graph of the preorder (P,≥R) is a subgraph of the right Cayley graph of
S+, and its strongly connected components are the R-classes of P . The graph
of the partial order (P/R,≥R) is thus a directed acyclic graph (DAG) where
vertices represent the R-classes of prefixes and directed edges stand for the strict
accessibility relation >R, as illustrated in Figure 2, where transitive arrows are
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Figure 2. The directed acyclic graph representation of the par-
tial order (P/R,≥R). A play of an SG-player induces a unique
path in this DAG.

not drawn, for reasons of clarity (that is every time there is an edge from i to j,
and from j to k, the induced edge from i to k is dismissed). The successive moves
of an SG-player should be traced inside this graph, for every SG-play according
to elements of S+ induces a sequence of prefix positions which progresses deeper
and deeper inside this structure; Therefore, any infinite SG-play yields a unique
path in this DAG that either remains in an R-class of prefixes, or climbs along the
edges, with no chance of going back (this justifies the consideration of the partial
order (P/R,≥R) instead of (P/R,≤R)).

Furthermore, every prefix t can be associated with the partial ordered set
(E(t),≥) – called the petal – associated with t, and denoted by petal(t). The
graph of this set is also a DAG, and given e, f ∈ petal(t), there is an edge from
e to f if and only if e > f . The set petal(t) consists of all the possible waiting
moves for the prefix position t ordered by their absorption capacity. Up to mak-
ing copies of idempotents, we assume all petals to be disjoint. Then, for every
R-class of prefixes s̄, the set

⋃
t∈s̄ petal(t) will be called the flower associated with

s̄, denoted by flower(s̄). This set contains all the possible waiting moves for some
prefix position in s̄. Figure 3 illustrates a flower in detail.

The enriched graph representation of (P/R,≥R) where each R-class of prefixes
is associated with its corresponding flower will be called the DAG representation
of the finite semigroup S+. It can be drawn like a bunch of flowers, as illustrated
in Figure 4. This graph acts like an arena for an SG-player moving in S+. It allows
to follow the successive prefix positions reached along the play, and for every prefix
position, it describes all the possible waiting moves ordered by their absorption
capacity.

Finally, we prove that a strictly descending chain of idempotents of length n+1
in S+ implies the existence of n + 1 distinct accessible growing flowers.
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s1 s2

sks
_

s1petal(   )

s2petal(   )

skpetal(   )

Figure 3. The set flower(s̄) associated with the R-class of pre-
fixes s̄. Every prefix si in s̄ is associated with its corresponding
petal. The circle describes the ≥R-accessibility relation between
the prefixes si of s̄.

Figure 4. The DAG representation of a finite semigroup S+: ev-
ery R-class of prefixes is associated with its corresponding flower.
This DAG is an arena for every SG-player moving inside the semi-
group S+.

Proposition 3.1. Let e0 > e1 > . . . > en be any strictly descending chain of
idempotents in S+. Then the DAG representation of S+ contains the flowers
flower(ē0), flower(ē1), . . . , flower(ēn) such that:

• ēi is the R-class of prefixes of ei, for all i ≤ n;



476 J. CABESSA AND J. DUPARC

ene1e0 e2

Figure 5. A chain of idempotents e0 > e1 > . . . > en ensures
the existence of a linear sequence of n+1 distinct growing flowers.

• ēi >R ēj whenever i < j;
• flower(ēi) contains the chain of idempotents e0 > . . . > ei, for all i ≤ n,

as illustrated in Figure 5.

Proof. For each idempotent e, the pair (e, e) is obviously linked, hence every idem-
potent e is also a prefix. Therefore, the DAG representation of S+ contains the
following n + 1 flowers

flower(ē0), flower(ē1), . . . , flower(ēn),

where each ēi denotes the R-class of ei. Moreover, the relation ei > ej implies
ei >R ej , for every i < j. Finally, one has eiek = ei, for every k ≤ i, therefore the
chain e0 > . . . > ei is contained in flower(ēi), for all i ≤ n. �

3.2. Finite pointed ω-semigroups as graphs

The DAG representation of finite semigroups can be extended to some graph
representation of finite pointed ω-semigroups. For that purpose, we introduce the
signature of a petal. From this point onward, the pair (S, X) denotes a fixed finite
pointed ω-semigroup, where S = (S+, Sω) is a finite ω-semigroup and X is a subset
of Sω.

Definition 3.2. Let s ∈ P . The signature of the set petal(s) according to X is
the mapping signX : petal(s) −→ {+,−} defined by

signX(e) =

{
+ if seω ∈ X,

− if seω �∈ X.

The pair (petal(s), signX) is called the signed petal associated with s, denoted by
petalX(s). The union for t running in s̄ of the sets petalX(t) is called the signed
flower associated with s̄, denoted by flowerX(s̄).
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Figure 6. The signed DAG representation of a finite pointed ω-
semigroup (S, X): an enriched arena for an SG-player in charge
of X .

The graph of the partial order (P/R,≥R) where each R-class of prefixes s̄ is
associated with its corresponding signed flower – flowerX(s̄) – is called the signed
DAG representation of the finite pointed ω-semigroup (S, X), and is illustrated in
Figure 6. This graph is an arena for an SG-player in charge of X : the successive
prefix positions reached along the play can be traced inside this graph, just as
described in Section 3.1. But in addition, the signs associated with the idempo-
tents provide information about the acceptance of an SG-play according to X : an
infinite play belongs to X if and only if it can be factorized into the form seω,
for some positive e ∈ petalX(s). Finally, by finiteness of this DAG, every infinite
play will eventually remain forever in a signed flower, and hit at least one of the
corresponding signed petals infinitely often.

Example 3.3. Let S = ({0, 1}, {0ω, 1ω}) be the finite ω-semigroup defined by the
following relations:

0 · 0 = 0 0 · 1 = 0 1 · 0 = 0 1 · 1 = 1

00ω = 0ω 10ω = 0ω 01ω = 1ω 11ω = 1ω.

Let X = {0ω} ⊆ S. The signed DAG representation of (S, X) is illustrated in
Figure 7.
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Figure 7. The signed DAG representation of (S, X).
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Figure 8. The signed DAG representation of (T, Y ).

Example 3.4. Let T = ({a, b, c, ca}, {aω, (ca)ω, 0}) be the finite ω-semigroup
defined by the following relations:

a2 = a ab = a ac = a ba = a

b2 = b bc = c cb = c c2 = c

bω = aω cω = 0 aaω = aω a(ca)ω = aω

baω = aω b(ca)ω = (ca)ω caω = (ca)ω c(ca)ω = (ca)ω .

Let Y = {aω} ⊆ T . The signed DAG representation of (T, Y ) is illustrated in
Figure 8.
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3.3. Alternating chains

The following sections describe, step by step, the relevant game theoretical
characteristics of the signed DAG representation of a finite pointed ω-semigroup.
For that purpose, we introduce the notion of an alternating chain of idempotents in
a signed petal. This definition refines the notion of a chain in finite ω-semigroups,
introduced in [3], Theorem 6.

Definition 3.5. Let s ∈ P . An alternating chain in petalX(s) is a strictly de-
scending sequence of idempotents of petalX(s) e0 > e1 > . . . > en satisfying the
following properties:

(1) signs alternation: one has signX(ek) �= signX(ek+1), for all k < n;
(2) each ek is minimal for its sign: if ek > e and signX(ek) = signX(e), then

there exists f such that ek > f > e and signX(ek) �= signX(f).
An alternating chain in a signed flower is simply an alternating chain in a signed
petal of this signed flower.

Let C : e0 > e1 > . . . > en be an alternating chain in petalX(s). The length of
C, denoted by l(C), is n (number of its elements minus one, or equivalently, the
number of signs alternations). The chain C is said to be maximal in petalX(s) if
there is no other alternating chain of strictly larger length in petalX(s). Maximal
alternating chains in signed petals and flowers will play a central role in the sequel.
In addition, the chain C is called positive if signX(e0) = +, and negative otherwise.
Two alternating chains e0 > . . . > en and e′0 > . . . > e′n of the same length are said
to have the same signs if signX(en) = signX(e′n), and opposite signs otherwise.
Condition (1) of Definition 3.5 implies that these chains have the same signs if
and only if signX(ei) = signX(e′i), for all i. Finally, we say that an alternating
chain C captures the idempotent e if e ≥ e0, or if there exist ei and ei+1 such that
ei > e ≥ ei+1. If e ≥ e0, the rank of e in C is defined as rankC(e) = 0, and if
ei > e ≥ ei+1, then rankC(e) = i + 1. An alternating chain of length 3 capturing
the elements e and e′ is illustrated below. Every idempotent is associated with its
sign; arrows represent the >-relation.

(e0, +) −→ (e1,−) → (e,+) → (e2, +) → (e′,−) → (e3,−).

Example 3.6. Consider the finite pointed ω-semigroup (T, Y ) given in Exam-
ple 3.4. The sequence b > c > ca is a positive alternating chain of length 2 in
the signed petal petalY (a). Inside the signed petal petalY (ca), the element ca is
a negative alternating chain of length 0 capturing the idempotents b and c.

Alternating chains satisfy the following property.

Lemma 3.7. Let x ∈ petalX(s). Among all the longest alternating chains cap-
turing x, any two bear the same signs, hence induce the same rank for x.

Consequently, we simply denote by rank(e) the rank of e in any longest alternating
chain capturing e.
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Proof. Let C1 : e0 > . . . > en and C2 : f0 > . . . > fn be any two of the longest
alternating chains capturing x. We prove that their ≤-minimal elements en and
fn have the same sign. Consider e = (enfnen)π and f = (fnenfn)π , where π is
the exponent of S+. Then e and f are idempotent and se = sf = s, hence e and
f both belong to petalX(s). Moreover, ene = een = e, thus en ≥ e. Since C1

is a longest alternating chain capturing x, and en is minimal in this chain, the
elements e and en have the same sign. Condition (2) of Definition 3.5 then implies
that en = e. Similarly, fn = f . Hence, the properties of the ω-operation imply

seω = s(enfnen)ω = s(enfnfnen)ω = senfn(fnenenfn)ω = s(fnenfn)ω = sfω.

Therefore, the idempotents e = en and f = fn have the same sign, hence C1 and
C2 also have the same signs. We now prove that x has the same rank in C1 and
C2. Let k and l be the respective ranks of x in C1 and C2. We may assume,
without loss of generality, that k ≤ l. Therefore,

e0 > e1 > . . . > ek−1 > f� > . . . > fn,

f0 > f1 > . . . > f�−1 > ek > . . . > en

are two alternating chains of respective lengths (k−1)+(n−l)+1 = k+(n−l) and
(l−1)+(n−k)+1 = l+(n−k). The maximality of n implies both k+(n− l) ≤ n
and l + (n − k) ≤ n, thence k = l. �

3.4. Veins

We now focus on some specific alternating chains of idempotents called veins.
We prove that only these influence the SG-degree of our algebraic structures.

Definition 3.8. For every s in P , a maximal alternating chain in petalX(s) is
called a vein of this signed petal.

Example 3.9. Consider the finite pointed ω-semigroup (T, Y ) given in Exam-
ple 3.4. The sequence b > c > ca is a vein in petalY (a).

Playing waiting moves inside a given vein instead of potentially being able to
play through all idempotents of a signed petal will show not to be restricting. We
first prove the following property.

Lemma 3.10. Any two veins of a given signed petal share the same signs.

Proof. Let C1 and C2 be two veins inside petalX(s). As mentioned in the proof
of Lemma 3.7, the respective ≤-minimal elements m1 and m2 of C1 and C2 have
the same sign. Therefore C1 and C2 share the same signs too. �

We now define a mapping from any signed petal onto one of its veins. The
choice of the vein may be arbitrary, for Lemma 3.10 shows that all the veins of a
given signed petal are isomorphic. This mapping will be involved in the strategy
of an SG-player restricting his waiting moves to the sole idempotents of such veins.
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Figure 9. The surjection from a signed petal onto one of its veins.

Definition 3.11. Let V be any vein e0 > . . . > en inside petalX(s). We define
the mapping σ : petalX(s) −→ V by

σ(e) =

{
ei if rank(e) = i and signX(e) = signX(ei),
ei+1 if rank(e) = i and signX(e) �= signX(ei).

By finiteness of the set petalX(s), this mapping is effectively computable. It is
onto and preserves the order ≤ as well as the signature, as illustrated in Figure 9.

We finally come to prove that only one vein of each signed petal is significant in
the computation of the SG-degree of (S, X). More precisely, we show that any SG-
player remaining indefinitely in some prefix position s can restrict her/his waiting
moves to the idempotents of a given vein of petalX(s). To this end, we consider
the imposed version of the game SG(X, X) where:

• both players are in charge of X , and are not allowed to pass their turns;
• they are both forced to play s on their first move;
• on his next moves, I is forced to play waiting moves inside petalX(s);
• on her next moves, II is forced to play waiting moves belonging exclusively

to a given vein of petalX(s).
We prove that these restricted rules for Player II do actually not weaken her.

Proposition 3.12. Player II has a winning strategy in the above restricted game.
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Proof. Both players are forced to play s on their first move. A winning strategy
for Player II is described by induction as follows.

Strategy. Player II first associates with each element e in petalX(s) a counter κ(e).
After each move of I, the integer κ(e) will be the largest possible number of e’s
occurring in a factorization of I’s current play. More precisely, Player II updates
these counters as follows: let (e0, . . . , ek−1) be the elements of petalX(s) already
played by I, then for each e in petalX(s), the value of κ(e) is set as the largest
integer p such that there exists a sequence of indices

0 ≤ i1 ≤ j1 < i2 ≤ j2 < . . . < ip ≤ jp ≤ k − 1

satisfying e = (ei1 · · · ej1) = (ei2 · · · ej2) = . . . = (eip · · · ejp). After that, Player II
computes the images on the given vein under σ of all the idempotents whose
counters has increased, as described in Definition 3.11. She finally plays the ≤-
minimum of these images. Notice that this minimum always exists since the given
vein is well ordered by ≤.

The following three claims prove that this strategy is winning for Player II.
We first set inc∞ for the set of idempotents of petalX(s) whose counters were
incremented infinitely often during the play, and we let INC∞ be the set of ≤-
minimal elements of inc∞. Finally, we set

emin = min {σ(e) | e ∈ INC∞} .

Claim 3.13. Let α be I’s infinite play, and let e ∈ INC∞. Then πS(α) = seω.

Proof. Since e belongs to INC∞, its counter was incremented infinitely often
during the play. Consequently, I’s infinite play can be written as

α = sv0ev1ev2ev3ev4e . . . ,

where each vi is a finite word of petalX(s)∗, for all i ≥ 0. By idempotence of e, the
infinite word α is a factorization of β = sv0ev1eev2eev3eev4ee . . ., and the infinite
word γ = sv0(ev1e)(ev2e)(ev3e) · · · is a factorization of β. By Proposition 1.1, γ
can be associated with a linked pair (s, ẽ), where ẽ = eve, for some v ∈ petalX(s)∗.
Thus πS(γ) = sẽω. Moreover, by Lemma 1.2, since γ is a factorization of β, one
has πS(γ) = πS(β) = sẽω. Also, since α is a factorization of β, then πS(α) =
πS(β) = sẽω. Besides, notice that the element ẽ also appears infinitely often in
a factorization of α, hence its counter was incremented infinitely often during the
play, meaning that ẽ ∈ inc∞. In addition, one has eẽ = ẽe = ẽ, thus e ≥ ẽ. But
then the minimality of e in inc∞ implies ẽ = e. Finally, one obtains πS(α) =
sẽω = seω. �

Claim 3.14. Let β be II’s infinite play. Then πS(β) = semin
ω.

Proof. Let e ∈ INC∞ such that emin = σ(e). The strategy described above
guarantees that II played emin infinitely often. Therefore, II’s infinite play can be



THE ALGEBRAIC COUNTERPART OF THE WAGNER HIERARCHY: PART II 483

written as

β = su0eminu1eminu2emin . . . ,

where each ui is a finite word of elements of the given vein, for all i ≥ 0. Moreover,
no element g < emin was played by II infinitely often. Otherwise, since the set
σ−1(g) is finite, there would exist f in inc∞ such that σ(f) = g, contradicting the
minimality of emin. Now, since emin is the ≤-minimal element of the given vein
played infinitely often by II, every product eminui is equal to emin. Proposition 1.1
then shows that the infinite word β can be associated with the linked pair (s, emin).
Therefore πS(β) = semin

ω. �

Claim 3.15. One has πS(α) ∈ X if and only if πS(β) ∈ X .

Proof. Claim 3.14 shows that πS(β) = semin
ω. Now, let e be an idempotent of

INC∞ such that σ(e) = emin. Claim 3.13 proves that πS(α) = seω. Moreover,
since σ preserves the signature, the idempotents e and emin have the same sign.
Therefore, πS(α) = seω ∈ X if and only if πS(β) = semin

ω ∈ X . �

�

3.5. Main veins

In this section, we prove that only some specific veins of each flower is relevant
in the computation of the SG-degree. We focus on these main veins.

Definition 3.16. Let s̄ ∈ P/R. A maximal alternating chain in flowerX(s̄) is
called a main vein of this signed flower.

Example 3.17. Consider the finite pointed ω-semigroup (T, Y ) given in Exam-
ple 3.4. The sequence b > c > ca is a main vein in flowerY (a).

Main veins satisfy the same property as veins.

Lemma 3.18. Any two main veins of a given signed flower share the same signs.

Proof. Let C1 ⊆ petalX(s1) and C2 ⊆ petalX(s2) be two main veins of flowerX(s̄).
Once again, we prove that their ≤-minimal elements m1 and m2 have the same
sign. Since s1, s2 ∈ s̄, there exist a, b ∈ S1

+ such that s1a = s2 and s2b = s1.
Now, consider the elements e1 = (m1am2bm1)π and e2 = (m2bm1am2)π , where
π is the exponent of S+. Exactly as proved in the proof of Lemma 3.7, one has
m1 = e1 and m2 = e2. Moreover, the properties of the ω-operation ensure that
s1e1

ω = s2e2
ω. Therefore, e1 = m1 and e2 = m2 have the same sign, which proves

that C1 and C2 have the same signs too. �

As previously, we define a mapping from every signed petals of a signed flower
onto a given main vein. The choice of the main vein may also be arbitrary, for
Lemma 3.18 proves that mains veins of a given signed flower are all isomorphic.
We implicitly proceed in two steps: firstly, we map every signed petal onto one of
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Figure 10. The surjection from a signed flower onto one of its
main veins.

its veins, as defined in Definition 3.11; secondly, we map every such vein onto a
given main vein.

Definition 3.19. Let V : e0 > . . . > en be a main vein of flowerX(s̄). We define
the mapping σ̄ : flowerX(s̄) −→ V by

σ̄(e) =

{
ei if rank(σ(e)) = i and signX(e) = signX(ei),
ei+1 if rank(σ(e)) = i and signX(e) �= signX(ei).

This mapping is onto, and preserves the natural ordering on idempotents, as well
as the signature. It is illustrated in Figure 10.

We now show that only one main vein of each signed flower matters in the
computation of the SG-degree of (S, X). In other words, any player remaining
indefinitely in some R-class of prefixes s̄ can restrict his waiting moves to the
idempotents of a given main vein inside flowerX(s̄). We thence consider a given
main vein of flowerX(s̄) contained in petalX(t), for some t ∈ s̄, and we introduce
an imposed version of the game SG(X, X) where:

• both players are in charge of X , and cannot skip their turns;
• I is forced to only reach positions in s̄;
• II is forced to play t on her first move, and then restrict her waiting moves

to the idempotents of the given main vein in petalX(t).
We extend Proposition 3.12 to main veins.

Proposition 3.20. Player II has a winning strategy in this imposed game.
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Proof. Player II fist plays t, then applies the following strategy.

Strategy. She associates with each element e in flowerX(s̄) a counter κ(e). She
updates these counters after each move of I as follows: let (x0, . . . , xk−1) be the
elements already played by I, then for every t′ ∈ s̄ and every e ∈ petalX(t′), the
value κ(e) is the maximal number of occurrences of e appearing in position t′ in
a factorization of I’s current play. More precisely, the value of κ(e) is set as the
largest integer p such that there exists a sequence of indices

0 ≤ i1 ≤ j1 < i2 ≤ j2 < . . . < ip ≤ jp ≤ k − 1

satisfying
(1) e = (xi1 · · ·xj1) = (xi2 · · ·xj2 ) = . . . = (xip · · ·xjp);
(2) all the elements xi1 , xi2 , . . . , xip were played in position t.

Then II computes the images on the given main vein under σ̄ of all idempotents
whose counters were incremented, and plays the ≤-minimum of those. If no ele-
ment were incremented, II plays the ≤-largest idempotent of the given main vein.
This may happen, for instance, when I passes from one prefix of the R-class to
another, and hence doesn’t play an idempotent of flowerX(s̄).

This strategy ensures that Player II increments the counter of an idempotent
e ∈ petalX(t′) if and only if e appears in position t′ in a factorization of I’s play.
The three following claims prove that this strategy is winning for Player II. We first
introduce the following notations: we let inc∞ be the set of elements in flowerX(s̄)
whose counters were incremented infinitely often during the play, and INC∞ be
the set of ≤-minimal elements of inc∞. We also set

emin = min {σ̄(e) | e ∈ INC∞} .

Claim 3.21. Let α be I’s infinite play, let e ∈ INC∞, and let r ∈ s̄ be such that
e ∈ petalX(r). Then πS(α) = reω.

Proof. This proof is very similar to the proof of Claim 3.13. Since the idempotent
e ∈ petalX(r) has been played infinitely often in position r by Player I, the infinite
word α can be associated with a liked pair (r, ẽ), where ẽ is an element of petalX(r)
necessarily of the form ẽ = eve, for some v ∈ S∗

+. It follows that ẽ = e, and thus
πS(α) = rẽω = reω . �

Claim 3.22. Let β be II’s infinite play. Then πS(β) = temin
ω (where t is the

prefix associated with the given main vein).

Proof. This proof is very similar to the proof of Claim 3.14. Since there is a finite
number of petals in flowerX(t̄), and since every petal is finite, then no element
g < emin has been played infinitely often by Player II. Therefore, the infinite word
β can be associated with the linked pair (t, emin), thence πS(β) = temin

ω. �

Claim 3.23. One has πS(α) ∈ X if and only if πS(β) ∈ X .
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Proof. Claim 3.22 shows that πS(β) = temin
ω. Now, let e ∈ INC∞ such that

emin = σ̄(e), and let r be the prefix such that e ∈ petalX(r). Claim 3.21 proves that
πS(α) = reω . Finally, since σ̄ preserves the signature, the elements e and emin have
the same sign. Therefore, πS(α) = reω ∈ X if and only if πS(β) = temin

ω ∈ X . �

�

3.6. DAG of main veins

We now prove that the SG-degree of (S, X) only depends on the structure of the
partial ordered set (P/R,≥R), and on the lengths of the main veins. Consequently,
we shall prune the signed DAG representation of (S, X) by focusing specifically
on these two graphical features.

As a direct consequence of Proposition 3.20, we prove that an SG-player can
restrict all his waiting moves to the idempotents of some given main veins. For
this purpose, we consider once again an imposed version of the game SG(X, X)
where:

• both players are in charge of X , and cannot skip their turns;
• I plays without restriction, exactly like in a regular SG-game;
• II is allowed to play without restriction while moving from one prefix position

to another; however, every prefix position s that she reaches must be such
that petalX(s) contains a main vein V (s̄) of flowerX(s̄), and as long as she
remains in such a position s, she is forced to play waiting moves inside V (s̄).

Proposition 3.24. Player II has a winning strategy in this imposed game.

Proof. Player II follows Player I as described hereafter: every time I reaches an
R-class of prefixes s̄, Player II reaches a prefix si of this same R-class s̄ such that
petalX(si) contains a main vein V of flowerX(s̄). Then, as long as I’s play remains
in s̄, II plays idempotents of V as described in Proposition 3.20. And so on and
so forth. We prove that this strategy is winning for II. By finiteness of the partial
ordering (P/R,≥R), Player I is forced to eventually reach an R-class of prefixes
s̄ inside which he will remain indefinitely. Thence Player II reaches the prefix sk

associated with a given main vein of flowerX(s̄), and plays until the end of the
play as described in Proposition 3.20. She thus wins the game. �

Proposition 3.24 ensures that only one main vein of each signed flower matters in
the computation of the SG-degree. Therefore, the signed DAG representation of a
finite pointed ω-semigroup can be simplified by deleting all the signed flowers, but
only keeping a single main vein for each, as illustrated in Figure 11. Vertices denote
the R-classes of prefixes, directed edges describe the ≥R-accessibility relation, and
every signed stick represents a main vein of the corresponding signed flower. In
this graph representation, the R-classes of prefixes are called nodes, the main vein
associated with a node n is denoted by V (n), and the length of V (n) by l(V (n)).
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Figure 11. The pruned signed DAG representation of a finite
pointed ω-semigroup: a labeled DAG, where each node is associ-
ated with a signed integer describing the sign and the length of
its corresponding main veins.

4. Main algorithm

We now present the main algorithm that computes the SG-degree of every
finite pointed ω-semigroup. This algorithm works on the pruned signed DAG
representation of finite pointed ω-semigroups. It associates every finite pointed
ω-semigroup (S, X) with a signed ordinal [εX ]ξX . We will further prove that
dsg(X) = ξX , and that X is self-dual if and only if εX = ±, and X is non-self dual
if and only if εX ∈ {+,−}. This algorithm is a reformulation in terms of ordinals of
Wagner’s naming procedure [16,21,23]. We refer to Section 1.1 for basic definitions
and facts about ordinals, ordinal arithmetic, and signed ordinals.

Algorithm 4.1.
INPUT a finite pointed ω-semigroup (S, X).
OUTPUT a signed ordinal [εX ]ξX .

(1) Compute the pruned signed DAG representation of (S, X).
(2) Define the function n �−→ [δn]θn which associates to each node n the signed

ordinal [δn]θn given by

δn =

{
+ if the first element of V (n) is positive,
− if the first element of V (n) is negative,

and θn = ωl(V (n))
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(3) Then, by backward induction, define the other function n �−→ [εn]ξn which
associates to each node n the signed ordinal [εn]ξn as follows.

(i) If n is a sink, then [εn]ξn = [δn]θn, where [δn]θn is the signed ordinal
associated with n by procedure (2).

(ii) If n is not a sink, and m1, . . . , mk are all the direct successors of
n already associated with their respective signed ordinals [ε1]ξ1, . . . ,
[εk]ξk:

• If among [ε1]ξ1, . . . , [εk]ξk, there is only one maximal signed
ordinal [εmj ]ξmj , then consider the Cantor Normal Form of
base ω of the ordinal ξmj : ξmj = ωαl · βl + . . . + ωα0 · β0,

– If θn < ωα0 or if both θn = ωα0 and δn = εmj (same
signs), then set [εn]ξn = [εmj ]ξmj .

– If θn > ωα0 or if both θn = ωα0 and δn �= εmj (opposite
signs), then set [εn]ξn = [δn](ξmj + θn).

• If among [ε1]ξ1, . . . , [εk]ξk, there are two opposite maximal or-
dinals [εmi ]ξmi and [εmj ]ξmj (i.e. ξmi = ξmj and εmi �= εmj ),
then set [εn]ξn = [δn](ξmi + θn).

(4) Finally, the finite pointed ω-semigroup (S, X) is associated with the signed
ordinal [εX ]ξX as follows: let [ε1]ξ1, . . . , [εp]ξp be the signed ordinals asso-
ciated by procedure (3) with all the respective sources s1, . . . , sp:

• If among [ε1]ξ1, . . . , [εp]ξp, there is only one maximal signed ordinal
[εmax]ξmax, then [εX ]ξX = [εmax]ξmax.

• On the other hand, if among [ε1]ξ1, . . . , [εp]ξp, there are two opposite
maximal ordinals [+]ξmax and [−]ξmax, then [εX ]ξX = [±]ξmax.

The following examples give several applications of this algorithm.

Example 4.2. Figure 12 illustrates the computation of Algorithm 4.1 on the DAG
representation of a finite pointed semigroup (S, X). In the top figure, every node n
is associated with its signed ordinal [δn]θn given by procedure (2). In the bottom
figure, every node n is associated with the two signed ordinals [δn]θn (top) and
[εn]ξn (bottom) respectively given by procedures (2) and (3). The final signed
ordinal associated with (S, X) is is the second signed ordinal associated with the
unique root, namely [+](ω9 + ω4 · 2).

Example 4.3. Figure 13 illustrates another computation of Algorithm 4.1 on
the DAG representation of a finite pointed semigroup (T, Y ). The final signed
ordinal associated with Y is the second signed ordinal associated with the two
roots, namely [±](ω9 + ω4 · 2).

Next theorem states that Algorithm 4.1 computes the precise SG-degree of any
ω-subset. The whole following section is devoted to proving this result.

Theorem 4.4. Let (S, X) be a finite pointed ω-semigroup, and let [εX ]ξX be the
signed ordinal associated with X by the main algorithm. Then dsg(X) = ξX , and
X is self-dual if and only if [εX ] = ±.
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Figure 12. Example of a computation of Algorithm 4.1.

Example 4.5. Let A = {a, b}, and let K = (A∗a)ω. The finite pointed ω-semi-
group (S, X) given in Example 3.3 is the syntactic pointed ω-semigroup of K.
The computation of Algorithm 4.1 on (S, X) gives [εX ]ξX = [−]ω, as illustrated in
Figure 14 below. Therefore, X is non-self-dual and dsg(X) = ω. The ω-language
K is thence also non-self-dual with Wagner degree equal to ω.

Example 4.6. Let B = {a, b, c} and let L = (a{b, c}∗ ∪ {b})ω be an ω-language
over B. The finite pointed ω-semigroup (T, Y ) given in Example 3.4 is the syntactic
pointed ω-semigroup of L. The computation of Algorithm 4.1 on (T, Y ) gives
[εY ]ξY = [+]ω2, as illustrated in Figure 15. Therefore, Y is non-self-dual and
dsg(Y ) = ω2. Hence L is also non-self-dual with Wagner degree precisely ω2.
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Figure 13. Another example of a computation of Algorithm 4.1.

Figure 14. The signed DAG representation of (S, X).



THE ALGEBRAIC COUNTERPART OF THE WAGNER HIERARCHY: PART II 491

Figure 15. The signed DAG representation of (T, Y ).

5. Correctness of the main algorithm

This section is entirely devoted to proving Theorem 4.4. For this purpose,
we introduce three infinite two-player games involving signed ordinals and finite
pointed ω-semigroups. The first one provides a game theoretical reformulation of
the ordering on signed ordinals. The two other ones define two useful reductions
on finite pointed ω-semigroups and signed ordinals. From this point onward, every
signed ordinal is assumed to be of the form [ε]ξ, with ε ∈ {+,−} and 0 < ξ < ωω.
Signed ordinals of the form [±]ξ will be considered separately at the end of the
section.

The following preliminary results involve the notions of playground and cut de-
fined in Section 1.1, as well as the notations of Algorithm 4.1. Hence, if (S, X) is
a finite pointed ω-semigroup, then [εX ]ξX denotes the signed ordinal associated
with X after computation of Algorithm 4.1, and if n is a node of the signed DAG
representation of (S, X), then [δn]θn and [εn]ξn are the signed ordinals associ-
ated with n by procedures (2) and (3), respectively. The first results relates the
playgrounds of [δn]θn and [εn]ξn, and proves that the signed ordinals [εn]ξn are
decreasing along the ≥R-accessibility relation between the nodes.

Lemma 5.1. Let (S, X) be a finite pointed ω-semigroup, and let n and n′ be two
nodes of the signed DAG representation of X.

(1) Either pg(ξn) > pg(θn), or both pg(ξn) = pg(θn) and εn = δn.
(2) If n ≥R n′, then [εn]ξn ≥ [εn′ ]ξn′ .
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Figure 16. In the signed DAG representation of a finite pointed
ω-semigroup, for each node n, every cut of [εn]ξn is accessible
from n.

Proof. We use the notations of the main algorithm.
(1) We consider all possible values of [εn]ξn computed by Algorithm 4.1. If

n is a sink, then [εn]ξn = [δn]θn. Thus obviously both pg(ξn) = pg(θn)
and εn = δn hold. Otherwise, if [εn]ξn = [εmj ]ξmj , then pg(ξn) = α0.
Therefore, either pg(ξn) > pg(θn), or both pg(ξn) = pg(θn) and εn = δn.
Finally, if [εn]ξn = [δn](ξmj + θn), then pg(ξn) = pg(θn), by definition of
the ordinal sum.

(2) The signed ordinals [εn]ξn are assigned recursively from the sinks to the
sources of the signed DAG representation of (S, X). In both cases, if
[εn]ξn = [εmj ]ξmj or if [εn]ξn = [δn](ξmj + θn), then [εn]ξn is larger than
the signed ordinals assigned to all its direct successors. Therefore, [εn]ξn

is larger than the signed ordinals assigned to all its successors. �

Next result shows that, for every node n, all the cuts of [εn]ξn are reachable
from n. More precisely, for every node n and every cut c of [εn]ξn, there exists
a node n′ such that both n >R n′ and [εn′ ]ξn′ = c. This accessibility relation
between cuts is illustrated in Figure 16. This property will be used to describe the
strategy of an SG-player moving from cut to cut.

Lemma 5.2. Let n be a node associated with the signed ordinal [εn]ξn, and let
[ε]ξ be a cut of [εn]ξn. Then there exists a node n′ such that both n >R n′ and
[εn′ ]ξn′ = [ε]ξ.

Proof. The proof goes by induction on ξn. If ξn is of the form ωnk , then there
is no possible cut of [εn]ξn, thence nothing to prove in this case. Otherwise, two
cases may occur.

(1) Assume that [εn]ξn = [εn](ωnk · pk + · · · + ωn0 · (p0 + 1)), for some k ≥ 0
and p0 ≥ 0. Procedure (3) of Algorithm 4.1 ensures that there exists a
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successor n′ of n (possibly n′ = n) such that [εn′ ]ξn′ = [εn]ξn, [δn′ ]θn′ =
[εn]ωn0 , and [εn′ ]ξn′ was updated as follows:

[εn′ ]ξn′ = [δn′ ]((ωnk · pk + · · · + ωn0 · p0 + ωml · ql + · · · + ωm0 · q0) + ωn0)

= [δn′ ](ωnk · pk + · · · + ωn0 · (p0 + 1)) = [εn]ξn,

for some n0 > ml > . . . > m0 ≥ 0, or possibly ωml · ql + · · ·+ ωm0 · q0 = 0.
By definition of the main algorithm, there exists a successor m of n′ such
that

[εm]ξm = [εm](ωnk · pk + · · · + ωn0 · p0 + ωml · ql + · · · + ωm0 · q0),

where εm = + if and only if εn = −. By the induction hypothesis, since
ξm < ξn, the node m can access a node associated with each cut of [εm]ξm.
Therefore, m can also access a node associated with each cut of [εn]ξn, and
so does n.

(2) Assume that [εn]ξn = [εn](ωnk · pk + · · ·+ ωn1 · p1 + ωn0), for some k ≥ 0.
The updating procedure (3) ensures that there exists a successor n′ of
n (possibly n′ = n) such that [εn′ ]ξn′ = [εn]ξn, [δn′ ]θn′ = [εn]ωn0 , and
[εn′ ]ξn′ was updated as follows:

[εn′ ]ξn′ = [δn′ ]((ωnk · pk + · · · + ωn1 · p1 + ωml · ql + · · · + ωm0 · q0) + ωn0)

= [δn′ ](ωnk · pk + · · · + ωn1 · p1 + ωn0) = [εn]ξn,

for some n1 > n0 > ml > . . . > m0 ≥ 0, or also possibly ωml · ql + · · · +
ωm0 · q0 = 0.

• If ωml · ql + · · ·+ωm0 · q0 �= 0, the main algorithm ensures that there
exists a successor m of n′ such that

[εm]ξm = [εm](ωnk · pk + · · · + ωn1 · p1 + ωml · ql + · · · + ωm0 · q0).

By the induction hypothesis, since ξm < ξn, the node m can access
a node associated with each cut of [εm]ξm. Therefore, m can also
access a node associated with each cut of [εn]ξn, and so does n.

• If ωml · ql + · · ·+ωm0 · q0 = 0, the main algorithm ensures that there
exist two successors m and m′ of n′ such that

[εm]ξm = [+](ωnk · pk + · · · + ωn1 · p1),

[εm′ ]ξm′ = [−](ωnk · pk + · · · + ωn1 · p1).

By the induction hypothesis, since ξm < ξn, both nodes m and m′

can access a node associated with each cut of [εm]ξm. Finally, since
[εm]ξm and [εm′ ]ξm′ are the two largest cuts of n, and n can access
m and m′, then n can access a node associated with each cut of
[εn]ξn. �
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We now introduce three infinite two-player games. The first one provides a
game theoretical characterization of the ordering on signed ordinals. The two
others involve finite pointed ω-semigroups and signed ordinals.

Let [εI ]ξI and [εII ]ξII be two signed ordinals with εI , εII ∈ {+,−}. The infinite
two-player game O([εI ]ξI , [εII ]ξII) is defined as follows. First of all, Player I
chooses a non-zero signed ordinal which is either [εI ]ξI , or a cut of [εI ]ξI , and
Player II chooses a non-zero signed ordinal which is either [εII ]ξII , or a cut of
[εII ]ξII . Then, the possible moves of players I and II are given as follows:

• Let [ε]ξ be the last signed ordinal played by Player I. Then I can either choose
a cut of [ε]ξ, or he can play a positive integer from his current playground:
that is an integer q such that 0 ≤ q ≤ pg(ξ).

• Similarly, let [δ]η be the last signed ordinal played by Player II. Then II
can either choose a cut of [δ]η, or play a positive integer from her current
playground.

In other terms, each player decreases her/his signed ordinal cut by cut, and plays
integers of his current playground in between. Player I begins. Player II is allowed
to skip her turn, provided she plays infinitely often, whereas Player I is not allowed.
At the end of the play, the infinite sequences respectively played by I and II
consist of two finite strictly decreasing sequences of signed ordinals [εI,0]ξI,0 >
. . . > [εI,m]ξI,m and [εII,0]ξII,0 > . . . > [εII,n]ξII,n, and two infinite sequences
of integers. Let iI and iII be the largest integers played infinitely often by I
and II, respectively. We consider the following parity condition: Player I’s play
(resp. Player II’s play) is said to be accepted if εI,m = + ⇔ iI is even (resp.
εII,n = + ⇔ iII is even); it is called rejected otherwise. Then Player II wins
O([εI ]ξI , [εII ]ξII) if and only if I and II’s plays are either both accepted or both
rejected. This game is illustrated in Figure 17. We now define via this game the
following reduction on signed ordinals:

[εI ]ξI ≤O [εII ]ξII iff Player II has a winning strategy in O([εI ]ξI , [εII ]ξII).

As usual, we set [εI ] ξI <O [εII ] ξII if and only if both [εI ] ξI ≤O [εII ] ξII and
[εII ] ξII �≤O [εI ] ξI hold, and also [εI ] ξI ≡O [εII ] ξII if and only if [εI ] ξI ≤O

[εII ] ξII and [εII ] ξII ≤O [εI ] ξI .
Furthermore, the infinite two-player game SGO(X, [ε]ξ) is defined as follows.

Player I plays exactly the same way as in a game SG(X, ), and Player II plays as
in a game O( , [ε]ξ). Player II is allowed to skip her turn, but must play infinitely
often, whereas Player I is not allowed to do so. Along the play, Player I builds an
infinite sequence of elements (s0, s1, . . .), and Player II builds a finite sequence of
signed ordinals [εII,0]ξII,0 > . . . > [εII,n]ξII,n, and an infinite sequence of integers.
The winning condition is the following: Player II wins SGO(X, [ε]ξ) if and only if
πS(s0, s1, . . .) ∈ X ⇔ her play is accepted. Once again, this game induces the
reduction

X ≤OSG [ε]ξ if and only if Player II has a winning strategy in SGO(X, [ε]ξ).
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Figure 17. The infinite game O([εI ]ξI , [εII ]ξII). II first choose
the respective signed ordinals [εI,0]ξI,0 and [εII,0]ξII,0, and then
play either integers from their current playgrounds, or some cut
of their previous signed ordinal.

Finally, the infinite two-player game OSG([ε]ξ, X) is defined in a similar way.
I plays exactly as in O([ε]ξ, ), and II plays as in SG( , X). Player I begins and
cannot skip his turn. Player II is allowed to skip her turn, provided she plays
infinitely often. Along the play, Player I builds a finite sequence of signed ordinals
[εI,0]ξI,0 > . . . > [εI,n]ξI,n, and an infinite sequence of integers, and Player II
builds an infinite sequence (s0, s1, . . .) of elements of the semigroup involved. The
winning condition is: Player II wins OSG([ε]ξ, X) if and only if Player I’s play
is accepted ⇔ πS(s0, s1, . . .) ∈ X . One more time, we define the corresponding
reduction relation by

[ε]ξ ≤OSG X if and only if Player II has a winning strategy in OSG([ε]ξ, X).

We prove that the determinacy of these three specific games follows from Borel
Wadge determinacy.

Proposition 5.3. For every signed ordinals [ε]ξ and [ε′]ξ′, and every Borel ω-
subset X, the games O([ε]ξ, [ε′]ξ′), SGO(X, [ε]ξ), and OSG([ε]ξ, X) are deter-
mined.

Proof. We reduce each of these games to an equivalent Wadge game with Borel
winning condition. We conclude by Borel determinacy of Wadge games. More
precisely, according to the rules of the O-game, we let L be the set of infinite
words of the form

([ε0]ξ0)u0([ε1]ξ1)u1 · · · ([εn]ξn)αn,

where ([ε1]ξ1, . . . , [εn]ξn) is a strictly descending sequence of signed ordinals such
that each [εi+1]ξi+1 is a cut of [εi]ξi, each ui is a finite sequence of integers
bounded by pg(ξi), and αn is an infinite sequence of integers bounded by pg(ξn).
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We then equip L with the usual topology over infinite words. Now, for every
signed ordinal [ε]ξ, we let L[ε]ξ ⊆ L be the set of infinite words of the form
([ε]ξ)u0([ε1]ξ1)u1 . . . ([εk]ξk)αk such that the largest integer appearing infinitely
often in αk is even if and only if [εk] = +. Then L[ε]ξ can be written as the
conjunction of an open condition (Σ0

1) and a parity condition (BC(Σ0
2)), hence

it is Borel. In addition, a given player has a winning strategy in O([ε]ξ, [δ]η) if
and only if this same player has a winning strategy in W(L[ε]ξ, L[δ]η). Therefore,
Borel Wadge determinacy implies the determinacy of O-games. Similarly, a given
player has a winning strategy in the game SGO(X, [ε]ξ) if and only if the same
player has a winning strategy in W(π−1

S (X), L[ε]ξ), where πS is the infinite product
of the ω-semigroup involved. Once again, Borel Wadge determinacy proves that
SGO-games are determined. The last case is proved in a symmetric way. �

Example 5.4. Let (S, X) be the finite pointed ω-semigroup defined in Exam-
ple 3.3. We show that [−]ω ≤OSG X and X ≤SGO [−]ω. We will further prove
that these two relations imply dsg(X) = ω. We first describe a winning strategy
for Player II in OSG([−]ω, X). On his first move, Player I is forced to choose the
signed ordinal [−]ω, thence Players I and II are forced to play elements 0 or 1.
When Player I plays 1, Player II plays 0, and when Player I plays 0, Player II
plays 1. Therefore, if I plays infinitely many 1’s, then II plays infinitely many 0’s,
thus both plays are accepted. If I plays finitely many 1’s, thus infinitely many
0’s, then II plays finitely many 0’s, thus infinitely many 1’s, and hence both plays
are rejected. Therefore, II wins the game, thus [−]ω ≤OSG X . The very same
strategy is winning for Player II in the game SGO(X, [−]ω), which shows that
X ≤SGO [−]ω.

Example 5.5. Let (T, Y ) be the finite pointed ω-semigroup defined in Exam-
ple 3.4. Then one has [+]ω2 ≤OSG Y and Y ≤SGO [+]ω2 both hold. We will
further prove that these two relations imply dsg(Y ) = ω2.

We now present the technical results involved in the proof of Theorem 4.4. First,
we show that the O-reduction and the classical ordering on signed ordinals coincide.
Second, given a finite pointed ω-semigroup (S, X), the forthcoming Lemmas 5.8,
5.9, and 5.10 prove that both relations X ≤SGO [εX ]ξX and [εX ]ξX ≤OSG X hold.

Lemma 5.6. Let [ε]ξ and [ε′]ξ′ be two signed ordinals. Then [ε]ξ ≤O [ε′]ξ′ if and
only if [ε]ξ ≤ [ε′]ξ′ (where ≤ is the natural ordering on signed ordinals defined in
Section 1.1).

Proof.
(⇐) Assume that [ε]ξ ≤ [ε′]ξ′. We prove that Player II has a winning strategy

in O([ε]ξ, [ε′]ξ′). II is in charge of a larger signed ordinal than I in the game
O([ε]ξ, [ε′]ξ′). Therefore, along the play, she can choose her successive
signed ordinals in order that her current playground is always larger than
I’s. More precisely, if I lately chose [εI ]ξI , then she can always choose a
signed ordinal [εII ]ξII such that either pg(ξII) > pg(ξI), or both pg(ξII) =
pg(ξI) and εII = εI . In both cases, she can suitably answer to I’s integers
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in order to produce a play of the same acceptance. She wins the game,
thus [ε]ξ ≤O [ε′]ξ′.

(⇒) Assume that [ε]ξ �≤ [ε′]ξ′. We prove that Player I has a winning strategy
in O([ε]ξ, [ε′]ξ′). First of all, every time II skips her turn, I answers by
playing 0, which does not influence the acceptance of his current play. In
addition, if II lately chose the signed ordinal [εII ]ξII , then I can always
choose a signed ordinal [εI ]ξI such that either pg(ξI) > pg(ξII), or both
pg(ξI) = pg(ξII) and εII �= εI . In both cases, he can suitably answer to
II’s integers in order to produce a play of the opposite acceptance. He
wins the game, thus [ε]ξ �≤O [ε′]ξ′. �

Remark 5.7. In particular, given 0 < ξ < ωω, Player I has two winning strategies
in the respective games O([+]ξ, [−]ξ) and O([−]ξ, [+]ξ). He always chooses a signed
ordinal of the opposite sign as II’s current one, copies every integer played by II,
and plays 0 when II skips her turn. Therefore [+]ξ �≤O [−]ξ and [−]ξ �≤O [+]ξ.

Lemma 5.8. Let (S, X) be a finite pointed ω semigroup, let n be a node of X,
and let Xn = {x ∈ X | x = seω for some s ∈ n}. Then

(1) Xn ≤SGO [δn]θn;
(2) [δn]θn ≤OSG Xn.

Proof. Let V (n) be a main vein associated with n, and s be the prefix such that
V (n) ⊆ petalX(s).

(1) We describe a winning strategy for Player II in the game SGO(Xn, [δn]θn).
As long as I’s successive positions never reaches n, then II builds a rejecting
play and wins. Otherwise, by Proposition 3.20, we may assume, without
loss of generality, that I first plays the element s, and then restricts himself
to playing only elements of V (n). Hence, II chooses the signed ordinal
[δn]θn on her first move. Afterwards, for every idempotent e played by
I, she answers by playing the rank of e in V (n). The definition of [δn]θn

ensures that her current playground is large enough to do so. Moreover,
again by definition of [δn]θn, I’s play belongs to Xn if and only if II’s play
is accepted. Therefore, Player II wins the game, hence Xn ≤SGO [δn]θn.

(2) We describe a winning strategy for player II in OSG([δn]θn, Xn). Since
θn is of the form ωk, it has no cut, hence I is forced to choose the signed
ordinal [δn]θn on his first move. Then II plays the prefix s on her first move.
Afterwards, for each integer 0 ≤ n ≤ pg(θn) played by I, she answers by
the idempotent of V (n) whose rank is precisely n. By definition of [δn]θn,
I’s play is accepted if and only if II’s play belongs to Xn. Consequently,
Player II wins the game, thus [δn]θn ≤OSG Xn. �

Lemma 5.9. Let (S, X) be a finite pointed ω-semigroup associated with the signed
ordinal [εX ]ξX , with εX ∈ {+,−}. Then X ≤SGO [εX ]ξX .

Proof. We show that Player II has a winning strategy in SGO(X, [εX ]ξX). By
Proposition 3.24, we may assume that I restricts himself to only playing elements
of V (n) while his successive positions remain in a given node n. Hence, II first
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chooses the signed ordinal [εX ]ξX , and then plays as follows. Every time I’s play
reaches a node n, two cases may occur.

(1) The signed ordinal [εn]ξn is a cut of [εX ]ξX . Then Player II chooses the
signed ordinal [εn]ξn, and plays her integers as described in Lemma 5.8
(1). Lemma 5.1 (1) guarantees that her current playground is large enough
to play this way.

(2) The signed ordinal [εn]ξn is not a cut of [εX ]ξX . Then [εn]ξn can be
written as [εn](α + β), where [εn]α is the largest cut of [εX ]ξX strictly
below [εn]ξn. Hence, II chooses the signed ordinal [εn]α. By Lemma
5.1 (2), since the signed ordinals associated to each node are decreasing
along the accessibility relation, the ordinal [εn]α is indeed smaller than or
equal to the previous ordinal chosen by II. In addition, this choice ensures
that II’s playground is larger than pg(ξn). Thence, player II can play her
integers as described in Lemma 5.8 (1).

By finiteness and acyclicity of the signed DAG representation of (S, X), I’s play
will eventually become confined to a certain node n′′ after a finite amount of
time. Then, II plays according to the corresponding signed ordinal, as described
in cases (1) or (2). In both cases, Lemma 5.8 (1) ensures that she wins the game.
Therefore, X ≤SGO [εX ]ξX . �
Lemma 5.10. Let (S, X) be a finite pointed ω-semigroup associated with the
signed ordinal [εX ]ξX , with εX ∈ {+,−}. Then [εX ]ξX ≤OSG X.

Proof. We describe a winning strategy for Player II in OSG([εX ]ξX , X). Every
time I chooses a signed ordinal [ε]ξ, II reaches one of the accessible ≤R-largest
node n such that [εn]ξn = [ε]ξ. Lemma 5.2 ensures the existence of such a node.
When I plays some integer, II answers exactly as described in Lemma 5.8 (2).
By finiteness of strictly descending sequences of signed ordinals, I is forced to
choose a final cut of [εX ]ξX . Then, II reaches the suitable corresponding node,
and plays as described in Lemma 5.8 (2). She thus wins the game, proving that
[εX ]ξX ≤OSG X . �

The forthcoming Proposition 5.11 shows that the ≤O-relation on signed ordinals
coincides with the ≤SG-relation on ω-subsets. Moreover, we prove that an ω-subset
X is self-dual if and only if εX = ±. We also show that any self-dual ω-subsets and
any non-self-dual one which is located just one level below it in the SG-hierarchy
both share the same ordinal by Algorithm 4.1. The full proof of Theorem 4.4
follows from these statements.

Proposition 5.11. Let (S, X) and (T, Y ) be two finite pointed ω-semigroups
associated with the respective signed ordinals [εX ]ξX and [εY ]ξY , and such that
εX , εX ∈ {+,−}. Then X ≤SG Y if and only if [εX ]ξX ≤ [εY ]ξY .

Proof. If X ≤SG Y , then Lemmas 5.9 and 5.10 show that [εX ]ξX ≤OSG X ≤SG

Y ≤SGO [εY ]ξY . By composition of strategies, one obtains [εX ]ξX ≤O [εY ]ξY .
Therefore, Lemma 5.6 implies [εX ]ξX ≤ [εY ]ξY . Conversely, if [εX ]ξX ≤ [εY ]ξY ,
then Lemma 5.6 shows that [εX ]ξX ≤O [εY ]ξY . Hence, Lemmas 5.9 and 5.10 imply
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X ≤SGO [εX ]ξX ≤O [εY ]ξY ≤OSG Y . By composition of strategies, it follows that
X ≤SG Y . �
Proposition 5.12. Let (S, X) be a finite pointed ω-semigroup, and let [εX ]ξX be
the signed ordinal associated with X by the main algorithm.

(1) X is non-self-dual if and only if εX ∈ {+,−},
(2) X is self-dual if and only if εX = ±.

Proof. We prove that if εX ∈ {+,−} then X is non-self-dual, and if εX = ±, then
X is self-dual. The two converse directions follow from contrapositives of these
statements.

(1) If εX ∈ {+,−}, Procedure (4) of Algorithm 4.1 shows that there ex-
ists a source s̄ of the signed DAG representation of (S, X), such that
[εs̄]ξs̄ = [εX ]ξX . Now, let s be a prefix of the R-class s̄, and consider
the set s−1X . The main algorithm applied on (S, s−1X) shows that
[εs−1X ]ξs−1X = [εs̄]ξs̄ = [εX ]ξX . Therefore, Proposition 5.11 shows that
s−1X ≡SG X . By Proposition 2.3, the set X is non-self-dual.

(2) If [εX ]ξX = [±]ξX , Procedure (4) shows that there exist two sources s̄ and
t̄ of the signed DAG representation of (S, X), such that [εs̄]ξs̄ = [+]ξX and
[εt̄]ξt̄ = [−]ξX . Since the signed DAG representations of (S, X) and (S, Xc)
have opposite signs, there also exist two sources s̄′ and t̄′ of the signed DAG
representation of (S, Xc) such that [εs̄′ ]ξs̄′ = [+]ξX and [εt̄′ ]ξt̄′ = [−]ξX .
Now, let s ∈ s̄, t ∈ t̄, s′ ∈ s̄′, and t′ ∈ t̄′, and consider the sets s−1X ,
t−1X , s′−1Xc, and t′−1Xc. One has

[εs−1X ]ξs−1X = [εs̄]ξs̄ = [+]ξX = [εs̄′ ]ξs̄′ = [εs′−1Xc ]ξs′−1Xc ,

[εt−1X ]ξt−1X = [εt̄]ξt̄ = [−]ξX = [εt̄′ ]ξt̄′ = [εt′−1Xc ]ξt′−1Xc .

We now prove that Player II has a winning strategy in SG(X, Xc). Since
S is finite, after finitely many moves, I is forced to reach a prefix position
u belonging to some R-class of prefixes ū. Hence, he becomes in charge of
the set u−1X . The maximality properties of s̄ and t̄ ensure that either

[εu−1X ]ξu−1X = [εū]ξū ≤ [εs̄]ξs̄ = [εs′−1Xc ]ξs′−1Xc or

[εu−1X ]ξu−1X = [εū]ξū ≤ [εt̄]ξt̄ = [εt′−1Xc ]ξt′−1Xc ,

thus Proposition 5.11 shows that either u−1X ≤SG s′−1Xc, or u−1X ≤SG

t′−1Xc. Thence, for every u ∈ P (S+), there exists v ∈ {s′, t′} such that
II has a winning strategy σu in SG(u−1X, v−1Xc). Therefore, II first
skips her turn until I reaches a prefix position u, then plays the required
v, and finally applies the corresponding strategy σu. She wins the game
SG(X, Xc). Therefore, X ≤SG Xc, and X is self-dual. �

Proposition 5.13. Let (S, X) and (T, Y ) be two finite pointed ω-semigroups such
that [εX ]ξX = [+]ξ and [εY ]ξY = [±]ξ, for some 0 < ξ < ωω. Then X <SG Y ,
and there is no pointed ω-semigroup (U, Z) satisfying X <SG Z <SG Y .
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Proof. We first prove that X <SG Y . Since [εY ]ξY = [±]ξ, there exist two sources
s̄ and t̄ of the signed DAG representation of (T, Y ) such that [εs̄]ξs̄ = [+]ξ and
[εt̄]ξt̄ = [−]ξ. Now, let s ∈ s̄ and t ∈ t̄, and consider the sets s−1Y and t−1Y . One
has

[εs−1Y ]ξs−1Y = [εs̄]ξs̄ = [+]ξ = [εX ]ξX ,

[εt−1Y ]ξt−1Y = [εt̄]ξt̄ = [−]ξ = [εXc ]ξXc ,

thus Proposition 5.11 shows that s−1Y ≡SG X and t−1Y ≡SG Xc. In particular,
X ≤SG s−1Y ≤SG Y , hence X ≤SG Y . Moreover, Proposition 5.12 shows that
X is non-self-dual and Y is self-dual. Therefore X <SG Y . We now prove the
second part of the proposition. Let Z >SG X . Then X ≡SG s−1Y <SG Z, and
also Xc ≡SG t−1Y <SG Z. We prove that Y ≤SG Z, by describing a winning
strategy for Player II in SG(Y, Z). Since T is finite, after finitely many moves, I is
forced to reach a prefix position u belonging to some R-class of prefixes ū. Then,
he finds himself in charge of the set u−1Y . The maximality properties of s̄ and t̄
ensure that either

[εu−1Y ]ξu−1Y = [εū]ξū ≤ [εs̄]ξs̄ = [εs−1Y ]ξs−1Y or

[εu−1Y ]ξu−1Y = [εū]ξū ≤ [εt̄]ξt̄ = [εt−1Y ]ξt−1Y ,

and thus Proposition 5.11 shows that either u−1Y ≤SG s−1Y <SG Z, or u−1Y ≤SG

t−1Y <SG Z. Hence, for every u ∈ P (U+), II has a winning strategy σu in the
game SG(u−1Y, Z). Therefore, II skips her turn until I reaches such a position u,
and then applies σu. She wins SG(Y, Z), therefore Y ≤SG Z. �

Theorem 5.14. Let (S, X) be finite pointed ω-semigroup, and let [εX ]ξX be the
signed ordinal associated with X by Algorithm 4.1. Then dsg(X) = ξX .

Proof. First, consider the mapping which associates every non-self-dual ω-subset
X with its corresponding signed ordinal [εX ]ξX (with εX ∈ {+,−}). Propositions
5.12 (1) and 5.11 prove that this mapping is an embedding from the FSG-hierarchy
of non-self-dual ω-subsets into the hierarchy of signed ordinals of the form [+]ξ or
[−]ξ. The following section carries the proof that this mapping is onto. Therefore,
dsg(X) = ξX holds for every non-self-dual ω-subset X . In addition, Proposi-
tions 5.12 and 5.13 prove that self-dual ω-subsets and the non-self-dual ones lo-
cated right below in the FSG-hierarchy are associated with the same ordinal by the
main algorithm. Therefore, dsg(X) = ξX holds for every self-dual ω-subset X . �

6. Building pointed ω-semigroups of any given SG-degree

This section describes the algebraic counterpart of some ordinal operations.
Given two finite pointed ω-semigroups (S, X) and (T, Y ), and any integer n, we
successively describe the finite pointed ω-semigroups (S⊕T, X⊕Y ), (S�n, X�n),
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and (S � ω, X � ω) such that

dsg(X ⊕ Y ) = dsg(X) + dsg(Y ),
dsg(X � n) = dsg(X) · n,

dsg(X � ω) = dsg(X) · ω.

Consequently, starting from either the empty or the full ω-subset of SG-degree 1,
one may build by induction an ω-subset of any given SG-degree (strictly between
0 and ωω).

Let S = ((S+, ∗), Sω) and T = ((T+, �), Tω) be two finite ω-semigroups, and
let X ⊆ Sω and Y ⊆ Tω be two non-self-dual ω-subsets. Let also (S′

+, ∗′) be a
disjoint copy of the semigroup (S+, ∗) (i.e. a′ ∈ S′

+ if and only if a ∈ S+, and
a′ ∗′ b′ = c′ if and only if a ∗ b = c). We consider the set

(S ⊕ T )+ = T 1
+ ∪ S1

+ ∪ S
′1
+ ∪ {0}

equipped with the following operation

a · b =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if a = 0 or b = 0,
0 if a ∈ S1

+ and b ∈ S
′1
+ ,

0 if a ∈ S
′1
+ and b ∈ S1

+,
a if a ∈ S1

+ and b ∈ T 1
+,

b if b ∈ S1
+ and a ∈ T 1

+,
a if a ∈ S

′1
+ and b ∈ T 1

+,
b if b ∈ S

′1
+ and a ∈ T 1

+,
a � b if a and b belong to T 1

+,
a ∗ b if a and b belong to S1

+,
a ∗′ b if a and b belong to S

′1
+ .

The element 0 is a zero; the product of any element of S1
+ with any element of S

′1
+

is 0, and vice versa; the product of any two elements of either T 1
+, or S1

+, or S
′1
+ ,

coincides with the products of the respective monoids (T 1
+, �), (S1

+, ∗) or (S
′1
+ , ∗);

elements of S1
+ and S

′1
+ absorb the elements of T 1

+ from the left and the right, as
illustrated by the following tabular:

· ↗ T 1
+ S1

+ S
′1
+ 0

T 1
+ table of T 1

+ absorption by S1
+ absorption by S

′1
+ 0

S1
+ absorption by S1

+ table of S1
+ 0 0

S
′1
+ absorption by S

′1
+ 0 table of S

′1
+ 0

0 0 0 0 0

Lemma 6.1. The structure ((S ⊕ T )+, ·) is a semigroup.
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Figure 18. The DAG representation of (S ⊕ T )+. The accessi-
bility relation between two DAGs Gi and Gj means that each node
of Gj is ≥R-accessible from each node of Gi.

Proof. The respective operations of S1
+, S

′1
+ , and T 1

+, and the absorption relations
from the left and from the right are associative. Adding a zero does not affect the
associativity. Therefore, the operation defined on (S ⊕ T )+ is associative. �

The DAG representation of (S ⊕ T )+, consists of four sub-DAGs G1, G2, G3,
and G4, induced by the respective elements of T 1

+, S1
+, S

′1
+ , and by 0. These DAGs

satisfy the following properties:
• G1 is the DAG representation of T 1

+, therefore it contains the DAG represen-
tation of T+.

• G2 is the DAG representation of S1
+, possibly enriched by some new linked

pairs induced by the products of the form x · y, for x ∈ S1
+ and y ∈ T 1

+.
Hence, it contains the DAG representation of S+.

• Similarly, G3 contains the DAG representation of S′
+.

• G4 is the single-petal flower flower(0̄) associated with the R-class of prefixes
0̄ = {0}. This petal contains all idempotents of (S ⊕ T )+.

These DAGs are related as follows: G1 is not ≥R-accessible from any other Gi; G2

and G3 are both ≥R-accessible from G1, but there is no ≥R-accessibility relation
between them; G4 is ≥R-accessible from G1, G2, and G3. The DAG representation
of (S ⊕ T )+ is illustrated in Figure 18.

The finite semigroup (S ⊕ T )+ can be naturally extended to the finite ω-semi-
group

S ⊕ T = ((S ⊕ T )+, (S ⊕ T )ω) ,

where (S ⊕ T )ω = {[s, e] | (s, e) is a linked pair of (S ⊕ T )+}. Moreover, since
the DAG representation of T+ is contained in G1, there exists a signature of G1
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corresponding to an ω-subset Ȳ ⊆ (S ⊕ T )ω, such that dsg(Ȳ ) = dsg(Y ) and
Ȳ ≡SG Y . Since the DAG representation of S+ is contained in G2, there also
exists a signature of G2 corresponding to an ω-subset X̄ ⊆ (S ⊕ T )ω, such that
dsg(X̄) = dsg(X), and X̄ ≡SG X . By the same argument again, there exists a
signature of G3 corresponding to an ω-subset X̄ ′ ⊆ (S ⊕ T )ω, such that dsg(X̄ ′) =
dsg(X), but X̄ ′ ≡SG Xc. Using all these notations, one obtains the following
result.

Proposition 6.2.
• If dsg(X) > 1 or dsg(Y ) > 1, by setting X ⊕ Y = X̄ ∪ X̄ ′ ∪ Ȳ ⊆ (S ⊕ T )ω,

one has dsg(X ⊕ Y ) = dsg(X) + dsg(Y ).
• If dsg(X) = dsg(Y ) = 1, by setting X ⊕ Y = {[0, e] | e ∈ E((S ⊕ T )+)} ⊆

(S ⊕ T )ω, one has dsg(X ⊕ Y ) = dsg(X) + dsg(Y ) = 2.

Proof. For the first case, let r1, r2, r3 be the respective roots of G1, G2, and G3. The
main algorithm applied separately to the sub-DAGs G1, G2, G3 assigned according
to Ȳ , X̄, X̄ ′ respectively gives [εr1 ]ξr1 = [+]dsg(Y ), [εr2 ]ξr2 = [+]dsg(X), and
[εr3 ]ξr3 = [−]dsg(X). Then, the accessibility relations between these DAGs imply
that dsg(X⊕Y ) = dsg(X)+dsg(Y ). In the second case, the set flowerX(0̄) contains
only positive idempotents, and every other signed flower contains only negative
idempotents. Therefore, the main algorithm gives dsg(X ⊕ Y ) = ω0 · 2 = 2 =
dsg(X) + dsg(Y ). �

We now describe the algebraic counterpart of the ordinal finite multiplication.
Let (S, X) be a finite pointed ω-semigroup. For any integer n > 0, we define the
finite pointed ω-semigroup (S � n, X � n) by induction on n as follows:

• (S � 1, X � 1) = (S, X),
• S � (n + 1) = (S � n) ⊕ S, and X � (n + 1) = (X � n) ⊕ X .

Proposition 6.3. Let n > 0, then dsg(X � n) = dsg(X) · n.

Proof. A direct consequence of Proposition 6.2. �

We finally focus on the algebraic counterpart of the ordinal multiplication by
ω. We recall that, given any ordinal ξ with Cantor normal form ξ = ωnk · pk +
· · · + ωn0 · p0, the equality ξ · ω = ωnk+1 holds.

Let S = (S+, Sω) be a finite ω-semigroup, and X ⊆ Sω, such that dsg(X) =
ξ =

∑0
i=k ωni · pi. We then consider the finite monoid

(S � ω)+ = (S+ ∪ {1}, ·)

equipped with the operation of S+ completed as follows: a · 1 = 1 · a = a, for all
a ∈ (S � ω)+. The DAG representation of (S � ω)+, illustrated in Figures 19 and
20, corresponds to the following transformation of the DAG representation of S+:

• The flower flower(1̄) associated with the R-class of prefixes 1̄ = {1} appears.
It simply consists of the single-petal petal(1) = {1}. The R-class 1̄ can
≥R-access any other R-class of prefixes s̄.
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1

1
-

Figure 19. The transformation of the DAG representation of S+

into the one of (S�ω)+: the new flower flower(1̄) associated with
the R-class of prefixes 1̄ appears.

1

Figure 20. The transformation of a petal of S+ into a petal of
(S�ω)+: the new idempotent 1, strictly ≤-larger than any other,
appears.

• The idempotent 1, strictly ≤-larger than any other, appears in each petal of
each flower of S+. Therefore, the length of every chain of idempotents of S+

is increased by 1.
Moreover, since dsg(X) = ξ =

∑0
i=k ωni · pi, there exists at least one chain of

idempotents e0 > · · · > enk
in some petal of the DAG representation of S+.

Consequently, one can find the chain of idempotents 1 > e0 > · · · > enk
in some

petal of the DAG representation of (S � ω)+. Finally, the monoid (S � ω)+ can
be extended to the finite ω-semigroup

S � ω = ((S � ω)+, (S � ω)ω),

where (S � ω)ω) = {[s, e] | (s, e) is a linked pair of (S � ω)+}. Using all these
notations, one obtains the following proposition.

Proposition 6.4. Let s be a prefix of (S�ω)+ such that the chain of idempotents
1 > e0 > . . . > enk

belongs to petal(s). Let us also set

X � ω = {[s, e2i] | 0 ≤ 2i ≤ nk} ⊆ (S � ω)ω,

then dsg(X � ω) = dsg(X) · ω = ωnk+1.

Proof. The signature according to X � ω yields the unique maximal alternating
chain 1 > e0 > . . . > enk

of length nk + 1 in the signed DAG representation
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of (S � ω, X � ω). By Algorithm 4.1 and Theorem 5.14, one has dsg(X � ω) =
ωnk+1 = dsg(X) · ω. �

7. Normal forms

We now describe the algebraic invariants of the FSG-hierarchy. As in [8,18,21],
we prove that the SG-degree of (S, X) is completely characterized by some kind of
maximal alternating tree(s) contained in the signed DAG representation of (S, X)
– called the normal form of (S, X). Then any two finite pointed ω-semigroups
share the same SG-degree if and only if they have the same normal form, up to
some relation of bisimilarity. The normal form of (S, X) is a reformulation in this
algebraic context of the notions of maximal ξ-chains presented in [8], or maximal
μα-alternating tree described in [18], or also maximal binary tree-like sequences of
superchains described in [21].

In the sequel, the signed DAG representation of finite pointed ω-semigroups are
regarded as labeled DAGs of the form G = (V, E, p), where p : V −→ {+,−}×N+

is a priority function which associates with every node n the sign and length of
the main vein V (n).

We first introduce a notion of bisimulation over DAGs. Let G = (V, E, p)
and G′ = (V ′, E′, p′) be two finite DAGs, where p : V −→ {+,−} × N+ and
p′ : V ′ −→ {+,−}× N+ are priority functions. A bisimulation over G and G′ is a
left-and-right-total binary relation B ⊆ V ×V ′ such that (n, n′) ∈ B if and only if

• when n and n′ are sinks, then p(n) = p′(n′);
• when n or n′ are not sinks, then p(n) = p′(n′), and for every edge (n, m) ∈ E,

there exists an edge (n′, m′) ∈ E′ such that (m, m′) ∈ B, and conversely,
for every edge (n′, m′) ∈ E′, there exists an edge (n, m) ∈ E such that
(m, m′) ∈ B.

When there exists a bisimulation relation over G and G′, we say that G and G′ are
bisimilar and write G ≈ G′. As a matter of fact, the DAGs G and G′ are bisimilar
if and only if they contain the same kind of paths, i.e. for every path in G, there
exists a path in G′ visiting exactly the same priorities, and conversely, for every
path in G′, one can also find a path in G visiting the same priorities.

The definition of bisimultation can be apprehended by means of games. To this
end, we define the finite two-player game with perfect information BIS(G, G′),
where Player II tries to show that G and G′ are bisimilar, whereas Player I tries
to show the opposite. The rules are the following:

• On his first move, I chooses a source of either G or G′. If he chooses a source
s of G, II must answer by choosing a source s′ of G′ such that p(s) = p′(s′).
If he chooses a source s′ of G′, II must answer by choosing a source s of G
such that p(s) = p′(s′).

• After every move of II, let n ∈ V and n′ ∈ V ′ be the two nodes previously
chosen respectively by I and II. Then, if it still exists, I chooses either a
successor of n, or a successor of n′. If he chooses a successor m of n, then II
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must answer by choosing a successor m′ of n′ such that p(m) = p′(m′). If
he chooses a successor m′ of n′, then II must answer by choosing a successor
m of n such that p(m) = p′(m′).

If II is not able to answer correctly to I’s move, she looses. If both players cannot
choose a further successor node, II wins. Otherwise, the player which cannot
choose a successor node whereas his opponent can do so looses the game.

Proposition 7.1. Let G = (V, E, p) and G′ = (V ′, E′, p′) be two finite DAGs.
Then G ≈ G′ if and only if Player II has a winning strategy in BIS(G, G′).

Proof. If G ≈ G′, there exists a bisimulation relation B over G and G′ which
induces the following winning strategy for Player II in BIS(G, G′): every time
I chooses a node x ∈ V , II answers by an appropriate node x′ ∈ V ′ such that
(x, x′) ∈ B, and every time I chooses a node x′ ∈ V ′, II answers by a node x ∈ V
such that (x, x′) ∈ B. Conversely, assume that Player II has a winning strategy in
BIS(G, G′). Then for every path (x0, . . . , xn) in G, there exists a path (x′

0, . . . , x
′
n)

in G′ such that p(xi) = p′(x′
i), for all i; and conversely, for every path (y′

0, . . . , y
′
n)

in G′, there exists a path (y0, . . . , yn) in G′, such that p(yi) = p′(y′
i), for all i.

The set B of such pairs (xi, x
′
i) and (yi, y

′
i) obtained by considering II’s answer to

every possible paths (x0, . . . , xn) in G and (y0, . . . , yn) in G′ is a bisimulation over
G and G′. Therefore, G ≈ G′. �

We now define the tree representation of any signed ordinals [ε]ξ by induction
on the Cantor normal form of ξ. This representation is inspired by the notion of
a ξ-chain introduced by Duparc in [8].

(1) If [ε]ξ is of the form [+]ωn · p (respectively [−]ωn · p), for some integers
n ≥ 0 and p > 0, its tree representation consists of a “linear” sequence of
p accessible nodes alternately labeled by +n and −n (respectively −n and
+n), as illustrated in Figure 21.

(2) If [ε]ξ is of the form [±]ωn · p, for some integers n ≥ 0 and p > 0, its tree
representation consists of the two disjoint tree representations of [+]ωn · p
and [−]ωn · p, as illustrated in Figure 21.

(3) If the Cantor normal form of [ε]ξ is of the form [+](η+ωn ·p) (respectively
[−](η + ωn · p)), for some 0 < η < ωω, and some integers n ≥ 0 and
p > 0, its tree representation consists of the tree representation of [+]ωn ·p
(respectively [−]ωn · p) related to the two disjoint tree representations of
[+]η and [−]η, as illustrated in Figure 22.

(4) If the Cantor normal form of [ε]ξ is of the form [±](η + ωn · p), for some
0 < η < ωω, and some integers n ≥ 0 and p > 0, its tree representation
consists of the two disjoint tree representations of [+](η + ωn · p) and
[−](η + ωn · p).

Example 7.2. Figures 23 and 24 illustrate the tree representations of the respec-
tive signed ordinals [−](ω5 · 4 + ω3 · 3 + ω2 · 5) and [±](ω3 · 3 + ω2 · 5).

The tree representation of [ε]ξ is an encoding of the Cantor normal form of
ξ, with some additional property according to the sign ε. Hence, it is uniquely
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Figure 21. Tree representations of the signed ordinals [+]ωn · p
and [−]ωn · p. The union of these two graphs is the tree represen-
tation of [±]ωn · p. Every time there is an edge from i to j, and
from j to k, there is also an edge from i to k, but these transitive
edges are not represented, for reasons of clarity.

Figure 22. The tree representation of the signed ordinal [+](η+
ωn · p). The tree representation of [−](η + ωn · p) consists of the
same DAG, but with an initial sequence of nodes with opposite
signs.

determined, for each signed ordinal [ε]ξ. It has been defined in order to satisfy the
following properties.

Lemma 7.3. When applied on the tree representation of [ε]ξ, the main algorithm
outputs precisely [ε]ξ.

Proof. The proof goes by induction on the Cantor normal form of [ε]ξ. We prove
the result for the case ε ∈ {+,−}. The case ε = ± is a direct consequence. If
[ε]ξ is of the form [ε]ωn · p, for some n ≥ 0 and p > 0, the result is true. If the
Cantor normal form of [ε]ξ is of the form [ε](η + ωn · p), its tree representation
consists of the tree representation of [ε]ωn · p related to the two disjoint tree
representations of [+]η and [−]η. By the induction hypothesis, the two disjoint
subtree representations of [+]η and [−]η are associated with the respective signed
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Figure 23. Tree representation [−](ω5 · 4 + ω3 · 3 + ω2 · 5).

Figure 24. Tree representation of [±](ω3 · 3 + ω2 · 5).

ordinals [+]η and [−]η. By definition of the Cantor normal form, ωn is strictly
below the every factor ωi appearing in η. Therefore, the main algorithm associates
the signed ordinal [ε](η + ωn · p) = [ε]ξ with the root of the tree representation of
[ε]ξ. �

Lemma 7.4. The tree representations of [ε]ξ and [ε′]ξ′ are bisimilar if and only
if [ε]ξ = [ε′]ξ′.

Proof. Let T and T ′ be the respective tree representations of [ε]ξ and [ε′]ξ′. If
[ε]ξ = [ε′]ξ′, then T = T ′, thus obviously T ≈ T ′. Conversely, assume that
[ε]ξ �= [ε′]ξ′. Then two cases may occur. Firstly, if ξ = ξ′ but ε �= ε′, then T and T
are the very same trees, but with opposite priorities. Therefore, T and T ′ do not
contain the same paths, hence they are not bisimilar. Secondly, if ξ > ξ′, then T
is a tree representation containing strictly more nodes than T ′, or strictly larger
priorities then T ′. Hence, T and T ′ do not contain the same paths, and they are
not bisimilar. The case ξ′ > ξ is symmetric. �



THE ALGEBRAIC COUNTERPART OF THE WAGNER HIERARCHY: PART II 509

Given a finite pointed ω-semigroup (S, X), a normal form of (S, X) is a subgraph
G of the signed DAG representation of (S, X) containing a minimal number of
nodes and edges, and such that an SG-player restricting his moves inside G is
exactly as strong as if he were in charge of the whole DAG of (S, X). We prove
that the normal form of (S, X) is precisely the tree representation of [εX ]dsg(X)
(up to bisimilarity), and hence it is unique, up to bisimilarity. Therefore, any two
finite pointed ω-semigroups have the same SG-degree if and only if they have the
same normal form.

Proposition 7.5. Let (S, X) be a finite pointed ω-semigroup associated by the
main algorithm with the signed ordinal [εX ]ξX . Any normal form of (S, X) is
bisimilar to the tree representation of [εX ]ξX .

Proof. We use the notation of Algorithm 4.1 again. Let G be a normal form of
(S, X), and G′ be the tree representation of [εX ]ξX . After computation of the
main algorithm, the roots r and r′ of G and G′ are both associated with the
signed ordinal [εX ]ξX . Moreover, Lemma 5.2 shows that both graphs G and G′

satisfy the following properties: First, for every cut [ε]ξ of [εX ]ξX , there exists a
node n such that [εn]ξn = [ε]ξ. Second, any two nodes n and n′ satisfy n ≥R n′ if
and only [εn]ξn ≥ [εn′ ]ξn′ . In addition, by minimality of G and by definition of G′,
every path in G or in G′ never visits a node associated with a non-cut of [εX ]ξX ;
also, every path in G or in G′ never visits two nodes associated with the same
cut of [εX ]ξX . All these properties ensure the existence of the following winning
strategy for Player II in BIS(G, G′): every time I moves to a successor node n, II
moves to a successor node n′ such that [εn]ξn = [εn′ ]ξn′ . Therefore, G ≈ G′. �
Theorem 7.6. Let (S, X) be a finite pointed ω-semigroup, and NX be a normal
form of (S, X).

(1) dsg(X) = ξ and X is non-self-dual if and only if NX is bisimilar to the
tree representation of [+]ξ or [−]ξ.

(2) dsg(X) = ξ and X is self-dual if and only if NX is bisimilar to the tree
representation of [±]ξ.

Proof. If dsg(X) = ξ and X is non-self-dual, then [εX ]ξX is equal to [+]ξ or [−]ξ.
Hence, by Proposition 7.5, NX is bisimilar to the tree representation of [+]ξ or
[−]ξ. Conversely, assume that NX is bisimilar to the tree representation of [ε]ξ,
with ε ∈ {+,−}. Proposition 7.5 shows that NX is also bisimilar to the tree
representation of [εX ]ξX . Hence, the tree representations of [εX ]ξX and [ε]ξ are
bisimilar, and Lemma 7.4 proves that [εX ]ξX = [ε]ξ, where ε ∈ {+,−}. Therefore,
dsg(X) = ξ, and X is non-self-dual. The second case is proved analogously. �
Theorem 7.7. Let (S, X) and (T, Y ) be two finite pointed ω-semigroups with
normal forms NX and NY , respectively. Then X ≡SG Y if and only if NX ≈ NY .

Proof. If X ≡SG Y , then [εX ]ξX = [εY ]ξY . Hence, the tree representations TX and
TY of [εX ]ξX and [εY ]ξY are equal. Proposition 7.5 then implies NX ≈ TX = TY ≈
NY . Conversely, by Proposition 7.5 again, one has TX ≈ NX ≈ NY ≈ TY . Thus
TX ≈ TY , and Lemma 7.4 shows that [εX ]ξX = [εY ]ξY . Therefore, X ≡SG Y . �
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Figure 25. The signed DAG representation of a finite pointed
ω-semigroup (S, X), and its normal form.

Corollary 7.8. Let K and L be two ω-rational languages, let synt(K) and synt(L)
be their syntactic images, and let NK and NL be the normal forms of synt(K) and
synt(L). Then K ≡W L if and only if NX ≈ NY .

Proof. One has K ≡W L if and only if synt(K) ≡SG synt(L). Theorem 7.7 leads
to the conclusion. �

Example 7.9. Figure 25 (top) illustrates the signed DAG representation of a finite
pointed ω-semigroup (S, X). The two signed ordinals associated with each node
are the outcomes of procedures (2) (top) and (3) (bottom) of the main algorithm.
One has [εX ]ξX = [+](ω9 +ω4 ·2). Figure 25 (bottom) illustrates the normal form
of (S, X), which is bisimilar to the tree representation of [+](ω9 +ω4 · 2). One has
dsg(X) = ω9 + ω4 · 2, and X is non-self-dual.
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Figure 26. The signed DAG representation of a finite pointed
ω-semigroup (T, Y ), and its normal form.

Example 7.10. Again, Figure 26 (top) illustrates the signed DAG representation
of a finite pointed ω-semigroup (T, Y ). One has [εY ]ξY = [±](ω9 + ω4 · 2). Fig-
ure 26 (bottom) illustrates the normal form of (T, Y ), which is bisimilar to the
tree representation of [±](ω9 + ω4 · 2). In this case, one has dsg(Y ) = ω9 + ω4 · 2,
and X is self-dual.

Example 7.11. Consider the finite pointed ω-semigroup

(S, X) = (({0, 1}, {0ω, 1ω}), {0ω})

given in Example 3.3. The signed DAG representation and the normal form of
(S, X) are illustrated in Figure 27. The normal form of (S, X) and the tree repre-
sentation of [−]ω are bisimilar. Therefore, dsg(X) = ω, and X is non-self-dual.
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Figure 27. The signed DAG representation of (S, X) and its
normal form of reduced to the single node 1 labeled by −1.
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Figure 28. The signed DAG representation of (T, Y ) and its
normal form reduced to a single node a labeled by +2.

Example 7.12. Consider the finite pointed ω-semigroup

(T, Y ) = (({a, b, c, ca}, {aω, (ca)ω, 0}), {aω})

given in Example 3.4. The signed DAG representation and the normal form of
(T, Y ) is illustrated in Figure 28. The normal form of (T, Y ) is bisimilar to the
tree representation of [+]ω2. Therefore, dsg(X) = ω2, and X is non-self-dual.
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Conclusion

We hope this work provides a convincing description of the algebraic counter-
part of the Wagner hierarchy. In the first paper, we initially proved that the
Wagner degree of an ω-rational language is indeed a syntactic invariant. We then
defined a Wadge-like reduction on finite pointed ω-semigroups and showed that
the resulting algebraic hierarchy is precisely isomorphic to the Wagner hierarchy.
This algebraic representative of the Wagner hierarchy is thence a well-founded
and decidable partial ordering of height ωω. In particular, an ω-rational language
and its syntactic image are proven to share the same Wagner degree, and syntactic
pointed ω-semigroups appeared as minimal representatives of their Wagner classes,
whereas there is no convincing notion of minimal Muller automata of a given Wag-
ner degree. In the second paper, we described a graphical decision procedure of
this hierarchy based on a graph representation of finite pointed ω-semigroups.
This algorithm may thus compute the Wagner degree of any ω-rational language
directly on its syntactic image. It consists of a reformulation in this algebraic
context of Wagner’s naming procedure [21]. Afterwards, we showed how to build
finite pointed ω-semigroups of any given degree. We finally described the algebraic
invariant characterizing every degree of this algebraic hierarchy. These invariants
are also a reformulation in this context of the notions of maximal ξ-chains pre-
sented in [8], or maximal μα-alternating trees described in [18], or also maximal
binary tree-like sequences of superchains described in [21].

We notice that our graph representation of finite pointed ω-semigroups seems
more complex than the graph of Muller automata: the set of loops of a given
strictly connected component in a Muller automata is a semi-lattice for inclusion,
whereas the set of idempotents of a given R-class of prefixes is not, since it contains
several petals. The question of the existence of a DAG decomposition of finite ω-
semigroups looking exactly as complex as the graphs of Muller automata is still
open.

This work can be extended in several directions. On the one hand, we hope
to widen this analysis to more sophisticated ω-languages, like the ones recognized
by deterministic counters, or even deterministic pushdown automata (PDA). This
would require a description of the corresponding infinite ω-semigroups, since the
Wadge hierarchies of deterministic ω-languages accepted by counter automata or
PDA are strictly finer than the Wagner hierarchy [6,9]. However, an extension of
this work to languages recognized by nondeterministic PDA would be very chal-
lenging, since the Wadge hierarchy of ω-context-free languages (those recognized
by nondeterministic PDA) was proven to be as complicated as the Wadge hierarchy
of ω-languages accepted by nondeterministic Turing machines [10].

On the other hand, since the Wadge hierarchy coincides with the restriction of
the SG-hierarchy to free ω-semigroups, this work could also enlighten the Borel
Wadge hierarchy itself, by characterizing Borel sets by precise algebraic proper-
ties. For instance, we already know that a Borel ω-language A is non-self-dual
if and only if it is SG-equivalent to some set B extracted from some ω-monoid.
Also, a Borel set A has a Wadge degree of the form ω1

α, with cof(α) �= ω, if
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and only if it is SG-equivalent to some set B extracted from some ω-group (this
result involves more sophisticated considerations about initializability, as shown
in [5,7]). Extending such results would require to provide, for any given Borel
ω-language A, an SG-equivalent set B extracted from a particular ω-semigroup
which algebraically characterizes the Wadge class generated by A.

Acknowledgements. The authors wish to express their profound gratitude to Jean-Eric
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helpful and interesting discussions.

References

[1] J. Cabessa and J. Duparc, An infinite game over ω-semigroups, in Foundations of the Formal
Sciences V, Infinite Games, edited by S. Bold, B. Löwe, T. Räsch, J. van Benthem. Studies
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