We present an on-line linear time and space algorithm to check if an integer array
Mots-clés : combinatorics on words, period, border, string matching, string matching automata
@article{ITA_2009__43_2_281_0, author = {Duval, Jean-Pierre and Lecroq, Thierry and Lefebvre, Arnaud}, title = {Efficient validation and construction of border arrays and validation of string matching automata}, journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications}, pages = {281--297}, publisher = {EDP-Sciences}, volume = {43}, number = {2}, year = {2009}, doi = {10.1051/ita:2008030}, mrnumber = {2512260}, zbl = {1166.68033}, language = {en}, url = {https://www.numdam.org/articles/10.1051/ita:2008030/} }
TY - JOUR AU - Duval, Jean-Pierre AU - Lecroq, Thierry AU - Lefebvre, Arnaud TI - Efficient validation and construction of border arrays and validation of string matching automata JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications PY - 2009 SP - 281 EP - 297 VL - 43 IS - 2 PB - EDP-Sciences UR - https://www.numdam.org/articles/10.1051/ita:2008030/ DO - 10.1051/ita:2008030 LA - en ID - ITA_2009__43_2_281_0 ER -
%0 Journal Article %A Duval, Jean-Pierre %A Lecroq, Thierry %A Lefebvre, Arnaud %T Efficient validation and construction of border arrays and validation of string matching automata %J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications %D 2009 %P 281-297 %V 43 %N 2 %I EDP-Sciences %U https://www.numdam.org/articles/10.1051/ita:2008030/ %R 10.1051/ita:2008030 %G en %F ITA_2009__43_2_281_0
Duval, Jean-Pierre; Lecroq, Thierry; Lefebvre, Arnaud. Efficient validation and construction of border arrays and validation of string matching automata. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 43 (2009) no. 2, pp. 281-297. doi : 10.1051/ita:2008030. https://www.numdam.org/articles/10.1051/ita:2008030/
[1] The design and analysis of computer algorithms. Addison-Wesley (1974). | MR | Zbl
, and ,[2] Algorithms on Strings. Cambridge University Press (2007). | MR | Zbl
, and ,[3] Border array on bounded alphabet. J. Autom. Lang. Comb. 10 (2005) 51-60. | MR | Zbl
, and ,[4] Verifying a border array in linear time. J. Combin. Math. Combin. Comput. 42 (2002) 223-236. | MR | Zbl
, , , , , and ,[5] Analyse exacte et en moyenne d'algorithmes de recherche d'un motif dans un texte. Ph.D. thesis. Université Paris 7, France (1993).
,[6] Fast pattern matching in strings. SIAM J. Comput. 6 (1977) 323-350. | MR | Zbl
, and ,[7] Counting distinct strings. Algorithmica 23 (1999) 1-13. | MR | Zbl
, and ,[8] A linear pattern-matching algorithm. Technical Report 40, University of California, Berkeley (1970).
and ,[9] Abacaba-dabacaba. http://www.ac.wwu.edu/~mnaylor/abacaba/abacaba.html.
,[10] String matching algorithms and automata, in Proceedings of the First South American Workshop on String Processing, edited by R. Baeza-Yates and N. Ziviani, Belo Horizonte, Brazil (1993) 151-157 | MR
,[11] Computing Pattern in Strings. Addison Wesley Pearson (2003).
,- On suffix tree detection, Theoretical Computer Science, Volume 1012 (2024), p. 114728 | DOI:10.1016/j.tcs.2024.114728
- On Suffix Tree Detection, String Processing and Information Retrieval, Volume 14240 (2023), p. 14 | DOI:10.1007/978-3-031-43980-3_2
- String inference from longest-common-prefix array, Theoretical Computer Science, Volume 942 (2023), p. 180 | DOI:10.1016/j.tcs.2022.11.032
- Inferring Strings from Position Heaps in Linear Time, WALCOM: Algorithms and Computation, Volume 13973 (2023), p. 115 | DOI:10.1007/978-3-031-27051-2_11
- Universal reconstruction of a string, Theoretical Computer Science, Volume 812 (2020), p. 174 | DOI:10.1016/j.tcs.2019.10.027
- Recognizing Union-Find Trees is NP-Complete, Even Without Rank Info, International Journal of Foundations of Computer Science, Volume 30 (2019) no. 06n07, p. 1029 | DOI:10.1142/s0129054119400276
- Recognizing Union-Find trees is NP-complete, Information Processing Letters, Volume 131 (2018), p. 7 | DOI:10.1016/j.ipl.2017.11.003
- Recognizing Union-Find Trees Built Up Using Union-By-Rank Strategy is NP-Complete, Descriptional Complexity of Formal Systems, Volume 10316 (2017), p. 152 | DOI:10.1007/978-3-319-60252-3_12
- Representing prefix and border tables: results on enumeration, Mathematical Structures in Computer Science, Volume 27 (2017) no. 2, p. 257 | DOI:10.1017/s0960129515000146
- Inferring strings from Lyndon factorization, Theoretical Computer Science, Volume 689 (2017), p. 147 | DOI:10.1016/j.tcs.2017.05.038
- Combinatorics on partial word borders, Theoretical Computer Science, Volume 609 (2016), p. 469 | DOI:10.1016/j.tcs.2015.11.006
- Universal Reconstruction of a String, Algorithms and Data Structures, Volume 9214 (2015), p. 386 | DOI:10.1007/978-3-319-21840-3_32
- A Suffix Tree Or Not a Suffix Tree?, Combinatorial Algorithms, Volume 8986 (2015), p. 338 | DOI:10.1007/978-3-319-19315-1_30
- A suffix tree or not a suffix tree?, Journal of Discrete Algorithms, Volume 32 (2015), p. 14 | DOI:10.1016/j.jda.2015.01.005
- Inferring strings from suffix trees and links on a binary alphabet, Discrete Applied Mathematics, Volume 163 (2014), p. 316 | DOI:10.1016/j.dam.2013.02.033
- On the Number of Prefix and Border Tables, LATIN 2014: Theoretical Informatics, Volume 8392 (2014), p. 442 | DOI:10.1007/978-3-642-54423-1_39
- Inferring Strings from Lyndon Factorization, Mathematical Foundations of Computer Science 2014, Volume 8635 (2014), p. 565 | DOI:10.1007/978-3-662-44465-8_48
- Validating the Knuth-Morris-Pratt Failure Function, Fast and Online, Theory of Computing Systems, Volume 54 (2014) no. 2, p. 337 | DOI:10.1007/s00224-013-9522-8
- Verifying a Parameterized Border Array in O(n 1.5) Time, Combinatorial Pattern Matching, Volume 6129 (2010), p. 238 | DOI:10.1007/978-3-642-13509-5_22
- Counting and Verifying Maximal Palindromes, String Processing and Information Retrieval, Volume 6393 (2010), p. 135 | DOI:10.1007/978-3-642-16321-0_13
Cité par 20 documents. Sources : Crossref