Efficient validation and construction of border arrays and validation of string matching automata
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 43 (2009) no. 2, pp. 281-297.

We present an on-line linear time and space algorithm to check if an integer array f is the border array of at least one string w built on a bounded or unbounded size alphabet Σ. First of all, we show a bijection between the border array of a string w and the skeleton of the DFA recognizing Σ*w, called a string matching automaton (SMA). Different strings can have the same border array but the originality of the presented method is that the correspondence between a border array and a skeleton of SMA is independent from the underlying strings. This enables to design algorithms for validating and generating border arrays that outperform existing ones. The validating algorithm lowers the delay (maximal number of comparisons on one element of the array) from O(|w|) to 1+min{|Σ|,1+log2|w|} compared to existing algorithms. We then give results on the numbers of distinct border arrays depending on the alphabet size. We also present an algorithm that checks if a given directed unlabeled graph G is the skeleton of a SMA on an alphabet of size s in linear time. Along the process the algorithm can build one string w for which G is the SMA skeleton.

DOI : 10.1051/ita:2008030
Classification : 68R15, 68W05
Mots-clés : combinatorics on words, period, border, string matching, string matching automata
@article{ITA_2009__43_2_281_0,
     author = {Duval, Jean-Pierre and Lecroq, Thierry and Lefebvre, Arnaud},
     title = {Efficient validation and construction of border arrays and validation of string matching automata},
     journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications},
     pages = {281--297},
     publisher = {EDP-Sciences},
     volume = {43},
     number = {2},
     year = {2009},
     doi = {10.1051/ita:2008030},
     mrnumber = {2512260},
     zbl = {1166.68033},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/ita:2008030/}
}
TY  - JOUR
AU  - Duval, Jean-Pierre
AU  - Lecroq, Thierry
AU  - Lefebvre, Arnaud
TI  - Efficient validation and construction of border arrays and validation of string matching automata
JO  - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY  - 2009
SP  - 281
EP  - 297
VL  - 43
IS  - 2
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/ita:2008030/
DO  - 10.1051/ita:2008030
LA  - en
ID  - ITA_2009__43_2_281_0
ER  - 
%0 Journal Article
%A Duval, Jean-Pierre
%A Lecroq, Thierry
%A Lefebvre, Arnaud
%T Efficient validation and construction of border arrays and validation of string matching automata
%J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
%D 2009
%P 281-297
%V 43
%N 2
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/ita:2008030/
%R 10.1051/ita:2008030
%G en
%F ITA_2009__43_2_281_0
Duval, Jean-Pierre; Lecroq, Thierry; Lefebvre, Arnaud. Efficient validation and construction of border arrays and validation of string matching automata. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 43 (2009) no. 2, pp. 281-297. doi : 10.1051/ita:2008030. https://www.numdam.org/articles/10.1051/ita:2008030/

[1] A.V. Aho, J.E. Hopcroft and J.D. Ullman, The design and analysis of computer algorithms. Addison-Wesley (1974). | MR | Zbl

[2] M. Crochemore, C. Hancart and T. Lecroq, Algorithms on Strings. Cambridge University Press (2007). | MR | Zbl

[3] J.-P. Duval, T. Lecroq and A. Lefebvre, Border array on bounded alphabet. J. Autom. Lang. Comb. 10 (2005) 51-60. | MR | Zbl

[4] F. Franěk, S. Gao, W. Lu, P.J. Ryan, W.F. Smyth, Y. Sun and L. Yang, Verifying a border array in linear time. J. Combin. Math. Combin. Comput. 42 (2002) 223-236. | MR | Zbl

[5] C. Hancart, Analyse exacte et en moyenne d'algorithmes de recherche d'un motif dans un texte. Ph.D. thesis. Université Paris 7, France (1993).

[6] D.E. Knuth, J.H. Morris and V.R. Pratt Jr, Fast pattern matching in strings. SIAM J. Comput. 6 (1977) 323-350. | MR | Zbl

[7] D. Moore, W.F. Smyth and D. Miller, Counting distinct strings. Algorithmica 23 (1999) 1-13. | MR | Zbl

[8] J.H. Morris and V.R. Pratt Jr, A linear pattern-matching algorithm. Technical Report 40, University of California, Berkeley (1970).

[9] M. Naylor, Abacaba-dabacaba. http://www.ac.wwu.edu/~mnaylor/abacaba/abacaba.html.

[10] I. Simon, String matching algorithms and automata, in Proceedings of the First South American Workshop on String Processing, edited by R. Baeza-Yates and N. Ziviani, Belo Horizonte, Brazil (1993) 151-157 | MR

[11] W.F. Smyth, Computing Pattern in Strings. Addison Wesley Pearson (2003).

  • Amir, Amihood; Kondratovsky, Eitan; Levy, Avivit On suffix tree detection, Theoretical Computer Science, Volume 1012 (2024), p. 114728 | DOI:10.1016/j.tcs.2024.114728
  • Amir, Amihood; Kondratovsky, Eitan; Levy, Avivit On Suffix Tree Detection, String Processing and Information Retrieval, Volume 14240 (2023), p. 14 | DOI:10.1007/978-3-031-43980-3_2
  • Kärkkäinen, Juha; Piątkowski, Marcin; Puglisi, Simon J. String inference from longest-common-prefix array, Theoretical Computer Science, Volume 942 (2023), p. 180 | DOI:10.1016/j.tcs.2022.11.032
  • Kumagai, Koshiro; Hendrian, Diptarama; Yoshinaka, Ryo; Shinohara, Ayumi Inferring Strings from Position Heaps in Linear Time, WALCOM: Algorithms and Computation, Volume 13973 (2023), p. 115 | DOI:10.1007/978-3-031-27051-2_11
  • Gawrychowski, Paweł; Kociumaka, Tomasz; Radoszewski, Jakub; Rytter, Wojciech; Waleń, Tomasz Universal reconstruction of a string, Theoretical Computer Science, Volume 812 (2020), p. 174 | DOI:10.1016/j.tcs.2019.10.027
  • Gelle, Kitti; Iván, Szabolcs Recognizing Union-Find Trees is NP-Complete, Even Without Rank Info, International Journal of Foundations of Computer Science, Volume 30 (2019) no. 06n07, p. 1029 | DOI:10.1142/s0129054119400276
  • Gelle, Kitti; Iván, Szabolcs Recognizing Union-Find trees is NP-complete, Information Processing Letters, Volume 131 (2018), p. 7 | DOI:10.1016/j.ipl.2017.11.003
  • Gelle, Kitti; Iván, Szabolcs Recognizing Union-Find Trees Built Up Using Union-By-Rank Strategy is NP-Complete, Descriptional Complexity of Formal Systems, Volume 10316 (2017), p. 152 | DOI:10.1007/978-3-319-60252-3_12
  • CLÉMENT, JULIEN; GIAMBRUNO, LAURA Representing prefix and border tables: results on enumeration, Mathematical Structures in Computer Science, Volume 27 (2017) no. 2, p. 257 | DOI:10.1017/s0960129515000146
  • Nakashima, Yuto; Okabe, Takashi; I, Tomohiro; Inenaga, Shunsuke; Bannai, Hideo; Takeda, Masayuki Inferring strings from Lyndon factorization, Theoretical Computer Science, Volume 689 (2017), p. 147 | DOI:10.1016/j.tcs.2017.05.038
  • Allen, Emily; Blanchet-Sadri, F.; Bodnar, Michelle; Bowers, Brian; Hidakatsu, Joe; Lensmire, John Combinatorics on partial word borders, Theoretical Computer Science, Volume 609 (2016), p. 469 | DOI:10.1016/j.tcs.2015.11.006
  • Gawrychowski, Paweł; Kociumaka, Tomasz; Radoszewski, Jakub; Rytter, Wojciech; Waleń, Tomasz Universal Reconstruction of a String, Algorithms and Data Structures, Volume 9214 (2015), p. 386 | DOI:10.1007/978-3-319-21840-3_32
  • Starikovskaya, Tatiana; Vildhøj, Hjalte Wedel A Suffix Tree Or Not a Suffix Tree?, Combinatorial Algorithms, Volume 8986 (2015), p. 338 | DOI:10.1007/978-3-319-19315-1_30
  • Starikovskaya, Tatiana; Vildhøj, Hjalte Wedel A suffix tree or not a suffix tree?, Journal of Discrete Algorithms, Volume 32 (2015), p. 14 | DOI:10.1016/j.jda.2015.01.005
  • I, Tomohiro; Inenaga, Shunsuke; Bannai, Hideo; Takeda, Masayuki Inferring strings from suffix trees and links on a binary alphabet, Discrete Applied Mathematics, Volume 163 (2014), p. 316 | DOI:10.1016/j.dam.2013.02.033
  • Clément, Julien; Giambruno, Laura On the Number of Prefix and Border Tables, LATIN 2014: Theoretical Informatics, Volume 8392 (2014), p. 442 | DOI:10.1007/978-3-642-54423-1_39
  • Nakashima, Yuto; Okabe, Takashi; I, Tomohiro; Inenaga, Shunsuke; Bannai, Hideo; Takeda, Masayuki Inferring Strings from Lyndon Factorization, Mathematical Foundations of Computer Science 2014, Volume 8635 (2014), p. 565 | DOI:10.1007/978-3-662-44465-8_48
  • Gawrychowski, Paweł; Jeż, Artur; Jeż, Łukasz Validating the Knuth-Morris-Pratt Failure Function, Fast and Online, Theory of Computing Systems, Volume 54 (2014) no. 2, p. 337 | DOI:10.1007/s00224-013-9522-8
  • I., Tomohiro; Inenaga, Shunsuke; Bannai, Hideo; Takeda, Masayuki Verifying a Parameterized Border Array in O(n 1.5) Time, Combinatorial Pattern Matching, Volume 6129 (2010), p. 238 | DOI:10.1007/978-3-642-13509-5_22
  • I, Tomohiro; Inenaga, Shunsuke; Bannai, Hideo; Takeda, Masayuki Counting and Verifying Maximal Palindromes, String Processing and Information Retrieval, Volume 6393 (2010), p. 135 | DOI:10.1007/978-3-642-16321-0_13

Cité par 20 documents. Sources : Crossref