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POLYNOMIAL LANGUAGES
WITH FINITE ANTIDICTIONARIES*

ARSENY M. SHUR!

Abstract. We tackle the problem of studying which kind of functions
can occur as complexity functions of formal languages of a certain type.
We prove that an important narrow subclass of rational languages con-
tains languages of polynomial complexity of any integer degree over
any non-trivial alphabet.
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The combinatorial complexity of a formal language (simply complexity through-
out this paper) is a function that measures the diversity of the language. The most
well-known and intensively studied particular case of complexity is the subword
complexity of an infinite word (see Sect. 9 of [2], for example). Also, some atten-
tion is drawn to complexity of languages of power-free words, starting with [1],
where some bounds for the complexity of the language of binary cube-free words
were given. However, the complexity is an important characteristics of any lan-
guage. So, there are good reasons to study the complexity of languages in a more
general framework, moving from the question “what is the complexity of a given
language?” to the question “which complexities can languages from a given class
have?”. In this paper we continue the study of the last question, initiated in [6],
and prove that polynomial complexities of any degree are possible for an interesting
and important subclass of rational languages.

1. PRELIMINARIES

We recall some notation and definitions on words, finite automata and com-
plexity functions.
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An alphabet ¥ is a non-empty set of letters. A word is a finite sequence of
letters, say W = ai...a,. The symbol A stands for the empty word. A word
U is a factor (respectively prefiz, suffiz) of the word W if W can be written as
PUQ (respectively UQ, PU) for some (possibly empty) words P and Q. A factor
(prefix, suffix) of W is called proper if it does not coincide with the whole word
W. As usual, we write X" for the set of all n-letter words and %* for the set of all
words over . The subsets of ¥* are called languages. A language is factorial if it
is closed under taking factors of its words, and antifactorial if no one of its words
is a factor of another one.

A deterministic finite automaton (DFA) is a 5-tuple (X, @, 6, s,T') consisting of
a finite input alphabet ¥, a finite set of states (vertices) @, a partial transition
function 0 : @ X ¥ — (@, one initial state s, and a set of terminal states T'. The
underlying digraph of the automaton contains states as vertices and transitions
as directed labeled edges. Then every path in this digraph is labeled by a word,
and every cycle is labeled by a cyclic word. We make no difference between a
DFA and its underlying digraph. A accepting path is any path from the initial to
a terminal vertex. A DFA recognizes the language which is the set of all labels
of the accepting paths. The class of such languages coincides with the class of all
rational languages (Kleene’s theorem). An automaton is called consistent if each
its vertex is contained in some accepting path. A t¢rie is a DFA whose underlying
digraph is a tree such that the initial vertex is its root and the set of terminal
vertices is the set of all its leaves.

For an arbitrary language L over a finite alphabet 3 the complezity function is
defined by Cr(n) = |[LNE"|. Normally we are interested in the growth rate rather
than the precise form of the complexity function. As usual, we call a complexity
function polynomial if it is O(nP) for some p > 0 (bounded from above by a
polynomial of degree p), and ezponential if it is Q(a™) for some « > 1 (bounded
from below by an exponential function at base ). We also write ©(n?) for the
function which is bounded from above and from below by polynomials of degree p.

The definition of © (and, hence, of ©) suits well only for increasing functions.
So, if the complexity function is not increasing, we estimate its fastest increasing
subsequence. Actually, in this paper we deal only with factorial languages. For
a factorial language the complexity is known to be either bounded by a constant
or strictly increasing [4]. We also note that the complexity of the language of all
finite factors of an infinite word W is well-known in combinatorics of words under
the name of subword complexity of W.

In general, a language over an alphabet ¥ can have an arbitrary complexity
function, which does not exceed |X|™. But if we restrict ourselves to reasonable
classes of languages, we can describe possible complexity functions more precisely.
The following theorem describes all possible types of complexity functions for
rational languages.

Theorem 1.1 [6]. Let a consistent deterministic finite automaton A recognize the
language L. Then
(1) If A is acyclic, then L is finite.
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(2) If A contains two cycles sharing one vertex, then L is exponential.

(3) If A contains a cycle, and all cycles in A are disjoint, then L is polynomial,
and its complexity function is ©(n™ 1), where m is the maximum number of cycles
connected by an accepting path.

2. MAIN RESULTS

In this paper we are interested in constructing languages from an important
subclass of rational languages, having a given polynomial complexity. In order to
introduce this class we need the concept of antidictionary.

A word W is forbidden for the language L if it is not a factor of any element
of L. A forbidden word is minimal if all its proper factors are not forbidden. The
set of all minimal forbidden words for L is called the antidictionary of L. The
antidictionary is always antifactorial. If a factorial language L over the alphabet
Y has the antidictionary AD, then the following equalities holds:

L ="\ AD-$*AD, AD =X.LNLENS\L.

These equalities imply that a factorial language is rational if and only if so is its
antidictionary. In particular, the factorial languages with finite antidictionaries
form a proper subclass of the class of rational languages. This subclass plays a
special role in the investigations on complexity functions of languages. First, for
languages with finite antidictionaries there is an effective algorithm, evaluating the
complexity function (see, e.g., [5]). Second, this algorithm can be used for estimat-
ing the complexity function of an arbitrary factorial language in the following way.
If L is a factorial language and AD is its antidictionary, then one can take a finite
subset AD,, = ADN (X U...UZX") and evaluate the complexity function of the
language L,, with the antidictionary AD,, getting a reasonable upper bound for
the complexity of L. Thus, the very natural question is: what kind of complezity
functions can languages with finite antidictionaries have?

Many properties of words are stable under all permutations of the alphabet.
Any language with this property and closed under permutations is called sym-
metric. For example, the property “to avoid some regularity” (such as to contain
no squares, or cubes, or some other patterns) is obviously stable under all such
permutations, and defines the symmetric language of “regularity-free” words. A
symmetric language surely has the symmetric antidictionary. So, it is natural to
consider a restricted version of the above question as well: what kind of complexity
functions can languages with finite symmetric antidictionaries have?

Here we give a partial answer to both of the above questions. Namely, we show
that polynomials of any degree can be obtained as complexities of languages with
finite (and even symmetric finite) antidictionaries.

Theorem 2.1. Let ¥ be an alphabet such that |X| > 1, and m be a nonnegative
integer. Then there exists a factorial language over ¥ with a non-symmetric finite
antidictionary and the complexity ©(n™).
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FIGURE 1. The “web-like” automaton Wy, ., for the asymmetric
language of complexity ©(n™) over a k-letter alphabet. The cyclic
orderis a; < as < ... < ar < ai. The bigger circle represents the
initial vertex.

Theorem 2.2. Let ¥ be an alphabet such that |X| > 1, and m be a nonnegative
integer. Then there exists a factorial language over X with a symmetric finite
antidictionary and the complexity ©(n™).

Both of these theorems are proved by constructing an appropriate sequence
of examples. An example is an antidictionary; it suffices to build an automaton
recognizing the language with this antidictionary and apply Theorem 1.1 to it.
The automata for Theorem 2.1 have clear structure and can be drawn in the
general case, see Figure 1. On the other hand, there is a strong evidence that
any automata for the examples proving Theorem 2.2 should be complicated and
hardly can be drawn besides the case in Figure 3. So, for Theorem 2.1 we present
only the main constructions: the antidictionaries and the corresponding automata.
The reader should be able to recover details after studying the more involved proof



POLYNOMIAL LANGUAGES WITH FINITE ANTIDICTIONARIES 273

of Theorem 2.2, which is given below in a full extent. As an interesting feature
we note that in the simplest case of the two-letter alphabet the examples for both
theorems coincide. The existence of a non-symmetric example for the binary case
was already shown in [6], Theorem 4.1.

3. ASYMMETRIC CASE

Proof of Theorem 2.1. Fix a k-letter alphabet ¥ and a cyclic order on it. We shall
write @ for the successor of a in this order. The family of antidictionaries { AD,,}
over X is defined as follows:

AD,, ={abla, b€ ¥, b#a, b£a}U{d%aa, a’a*a, ..., ama™ talac X}U{a™ M alac X}.

The language over k-element alphabet ¥ with the antidictionary AD,, is recog-
nized by the “web-like” automaton W ,,, which can be built in the following steps
(see Fig. 1).

1. Use the same k-letter alphabet ¥ and the same cyclic order on it as for
constructing AD,,.

2. Draw the initial vertex and k vertices with loops. Label loops with distinct
letters.

3. Add vertices and edges to connect the initial vertex to each of the loops
by a separate path of m-+1 edges, labeled by the same letter as in the
loop. These paths will be called rays, and the added vertices will be called
intermediate.

4. Add vertices and edges to provide mk separate paths, connecting the in-
termediate vertices from different rays, as follows. If such a vertex is on
the ray with labels a on the distance i from the initial vertex, then the
path starting in this vertex consists of 7 edges labeled by a and leads to
the vertex which is on the distance ¢ from the initial vertex on the ray
labeled by a.

The language recognized by the automaton Wy ,, has the complexity ©(n") by
statement (3) of Theorem 1.1.

4. SYMMETRIC CASE

To prove Theorem 2.2 we shall construct an automaton recognizing a language
with a known finite antidictionary. For this purpose we use the algorithm of [3]
which is shortly described here in our terminology.

Algorithm 1.

Input: an antidictionary AD.

Output: a DFA A recognizing the factorial language L with the antidictionary AD.
Step 1. Construct a trie 7, recognizing AD. (7 is actually the digraph of the
prefix order on the set of all prefixes of AD.)
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FIGURE 2. Building the automaton W, 5. The forward edges are
drawn by ordinary lines, while the backward ones are represented
by dash lines. The initial vertex is A\. The vertices to the right of
the vertical line are deleted on step 4 of Algorithm 1.

Step 2. Associate each vertex in 7 with the word labeling the accepting path
ending in this vertex. (Now the set of vertices is the set of all prefixes of AD.)
Step 3. Add all possible edges to 7, following the rule:
the edge (U, V) labeled by the letter a should be added if

U is not terminal, and

U has no outgoing edge labeled by a, and

V' is the longest suffix of Ua which is a vertex of 7.
(These edges are called backward while the edges of the trie are called forward.)
Step 4. Remove all terminal vertices and mark all remaining vertices as terminal
to get A.

To illustrate the work of Algorithm 1, we give an example. Let us build
an automaton recognizing the binary factorial language with the antidictionary
ADy = {aaba,bbab, aaab,bbba} (Fig. 2). On first two steps, the trie 7 is built
(its edges are drawn by ordinary lines, its terminal vertices are rectangles), and
all vertices are labeled with words. Then on step 3 the backward edges (drawn
by dashed lines) are added. For example, a backward edge from the vertex aab
labeled by b leads to the vertex bb, since bb is the longest suffix of aabb which is a
vertex of 7. Finally, the “rectangle” vertices are removed on step 4. As a result,
we obtain the automaton W ».



POLYNOMIAL LANGUAGES WITH FINITE ANTIDICTIONARIES 275

Some useful properties of the automaton A are collected in the following lemma.

Lemma 4.1.

(1)
(2)

The automaton A is deterministic and consistent.

The set of vertices of A coincides with the set of all proper prefizes of the
words from AD.

The accepting paths in A are exactly the paths starting in the initial vertex.
If the word Wa is forbidden for some vertex W of A and some letter a,
then no outgoing edge from W labeled by a exists.

The automaton A is deterministic by construction and consistent since all
its vertices are terminal and can be achieved from the initial vertex by the
edges of the trie.

The set of vertices of the trie 7 is the set of all prefixes of AD. The
terminal vertices of the trie are its leaves, and then are labeled by the
words of AD. When we remove these vertices in step 4, only the vertices
labeled by the proper prefixes remain.

It is obvious, because all vertices of A are terminal.

After step 3 the transition function of the current automaton is well-
defined, so we surely have an outgoing edge from W labeled by a. We
prove that this edge leads to a terminal vertex, and hence, is removed at
step 4. If this edge is forward, then it leads to the vertex Wa of the trie.
This vertex is a prefix of the word from antidictionary and a forbidden
word simultaneously. Thus, it belongs to AD and therefore is a terminal
vertex of the trie. Suppose that this edge is backward. W itself is not
forbidden by (2), while Wa is. Then the word Wa has a forbidden suffix.
Its minimal forbidden suffix U belongs to AD and, at the same time, U is
its longest suffix which is a vertex of the trie. Hence the considered edge
leads to U, and U is terminal. The statement is proved. (|

Proof of Theorem 2.2. We fix a k-letter alphabet ¥ and consider a family of
symmetric finite antidictionaries {AD,,}, where AD,, is the minimal symmetric
language containing the following set of words (all a;’s are supposed to be different
elements of 3):

{

a"ag,

al'ay‘aq, aTray'asay, coo,oaftay'...altqar,
aay " tas,

a" tay lar, o lal ey lar, .., ap e al

aijazan, a1a2a3a7, ce.y Q102 ... QK107 }
(4.1)
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FIGURE 3. The automaton for the quadratic symmetric language
over the 3-letter alphabet. The forward edges are drawn by or-
dinary lines, while the backward ones are represented by dash or
dotted lines depending on whether they belong to a cycle or not.
The bigger circle represents the initial vertex.

So, to get AD,, from this set one should apply to all its elements all possible
permutations of Y.

Our goal is to prove that the factorial language L,, with the antidictionary
AD,,, has the complexity ©(n™). We apply Algorithm 1 to AD,, to obtain the
automaton A, which satisfies the basic condition of Theorem 1.1 by statement (1)
of Lemma 4.1. Such an automaton for the case k = 3, m = 2 is shown in Figure 3
(this is the most representative example which can be drawn in one page). We
would appeal to Figure 3 to comment our considerations. To prove the required
statement we show that A,, satisfies the condition (3) of Theorem 1.1, and the
maximum number of cycles connected by a accepting path is m—1.
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We use statement (2) of Lemma 4.1 and examine (1) to derive immediately the
following important observation:

(i) A word W is a vertex in A,, if and only if W = a™*! for some a € ¥
or W =aj...ai_jal, where 1 <r <k, a; € 2, a; # a; for i # j, and
O<t<s<m.

Now we proceed in two steps. On the first step we define and analyze a family
of cycles in A,,,, while the main result of the second step is that no other cycles
occur in this automaton. After these steps a few remarks conclude the proof.

Step 1. First we show that for any cyclic ordering a; < as < ... < ap < a; of &
there exists a cycle labeled by the cyclic word aias ... ar on the vertices asas . .. ag,
as...agay, ..., aias...ag—1 (by (i) all these words are actually vertices). Indeed,
since the word ajas...ay is not a vertex, the outgoing edge from ajas...ax_1
labeled by ayj is backward one and leads to agas...ar. Similarly, the outgoing
edge from asas...a labeled by a; leads to as...axa1, and so on. Finally, k
such backward edges constitute the required cycle. We also note that each of the
mentioned vertices determines a unique cyclic ordering. So, all k! such vertices
form (k—1)! disjoint cycles of length k, one for each ordering. In the following we
refer to them as to level one vertices and level one cycles. In Figure 3 one can see
two level one cycles, labeled by the cyclic words abe (counterclockwise) and acb
(clockwise).

Now we introduce level s cycles for any s < m. For arbitrary cyclic ordering
a1 < az < ... < ax < ay of ¥ such a cycle is labeled by the cyclic word afas3...a;
of length ks and consists of the vertices

S S S S S
as...ay_,ag, co.y o a3...aj_qag,
as...ala ..., as...asay
3 E%1, ’ 3 k%1
(4.2)
.
S S S S S
aj...a;_oQp_1, ..., Qf...a5_oay_q,

called level s vertices. To check the existence of this cycle, first note that for any
J,» 1 < j < s, the vertices af ...aj_,a;_,; and af .. .ai_Qaitll are connected by
a forward edge. Second, the outgoing edge from af ...a}_j,a;_, labeled by ay is
backward and leads to the vertex aj...aj_jar. All the above holds true for all
vertices from other rows of (2). Thus, we get the required cycle. Once again, any
level s vertex determines a unique cyclic ordering, and therefore belongs to a unique
level s cycle. On the other hand, from the list (2) it is clear that level s vertex can
not belong to level ¢ cycle for s # ¢. Thus, we have that all introduced cycles are
disjoint. See Figure 3 for two level 2 cycles labeled by aabbee (counterclockwise)
and aaccbb (clockwise).

At last, we define level m+1 cycles. For arbitrary a € ¥ the vertex a™*! has
only one outgoing edge, and this edge is labeled by a also, since all words a™*1b
for b # a are forbidden, so that no more outgoing edges exist by statement 4) of
Lemma 4.1. This edge obviously constitutes a loop; so, level m+1 cycles are just
these loops. They do not intersect other involved cycles. Thus, all defined cycles
are disjoint and the step is completed.
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Step 2. We verify that any vertex of A,, is a prefix of a level s vertex for some
s, 1 <s < m+1. Using statement (2) of Lemma 4.1, we just check the list (1). It
contains 2m rows, and we see that

— proper prefixes of the word in the first row are prefixes of the level m—+1
vertex a}' !

— proper prefixes of the words in the second and the third rows are prefixes
of the level m vertex a7*...ap" {;

— proper prefixes of the words in the next two rows are prefixes of the level

m—1 m—1,
m—1 vertex a;" " " ...a; 1

— proper prefixes of the words in the last row are prefixes of the level 1 vertex
aj...Ap—1.-

We say that a vertex is of prefiz level s, if it is a prefix of some level s vertex but
not that of any level s—1 vertices. In Figure 3 the vertices A, a, b, ¢ together with
six level 1 vertices are of prefix level 1, the vertices aa, bb, cc together with twelve
level 2 vertices are of prefix level 2, and three level 3 vertices are of prefix level 3.

Now we prove that any backward edge, which starts at a vertex of prefix level s
and does not belong to a level s cycle, ends in some vertex of prefix level s+1. Using
(i) we check all possibilities for the starting vertex of an edge. The case W = a™*!
is trivial, because this vertex has a unique outgoing edge which constitutes a level
m+1 cycle. Let W =aj...a3_jal. A few subcases are possible.

1. » =1. All k outgoing edges are forward ones.

2. 7> 1 and t < s. The outgoing edge labeled by a, is forward one, while
no other outgoing edges exist by statement (4) of Lemma 4.1, because the
word a§ ...af_,ala is forbidden for any a # a.

3.1 < r < kandt = s. The word aj...a;_;aja is forbidden if a €
{a1...,a,-1}, and we have no edge in this case by statement (4) of
Lemma 4.1. Furthermore, this word is a vertex if a ¢ {aq,...,a,}, and we
have a forward edge for each of such letters. Finally, the edge labeled by
a, is backward one and leads to as*!.

4. r = k and t = s. Here the outgoing edges are labeled with a; and aj
(otherwise we get a forbidden word and apply statement (4) of Lemma 4.1.
Both edges are backward ones. The edge labeled with a; belongs to a level
s cycle, while the other edge leads to a$*!, as in the previous case.

We see that in all subcases the backward edges which do not belong to level s
cycles ends in the vertex a*!, which is obviously of prefix level s+1.

Now we are able to show that all cycles in A, are exhausted by the level s
cycles for 1 < s < m+1. Note that a forward edge can not decrease the prefix
level of a vertex. The backward edges from level s cycles retain the prefix level,
while the other backward edges strictly increase it, as we already proved. It means
that cycles can not contain these “other” backward edges, because no edge can
decrease the prefix level back. But any cycle contains a backward edge, because all
forward edges are that of a trie. Therefore, any cycle contains a backward edge of
some level s cycle. So we try to get a cycle starting with such an edge. We omit the
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trivial case of level m+1 cycle, so let this edge connect some vertex aja3...aj, to
the vertex a3 ...aja1. As was studied above in subcase 2, the vertices a3 ... ajaf,
1 < r < s, have only one outgoing edge. Hence we inevitably come to the vertex
as ... aia’f. As was studied in subcase 4, here we have two outgoing edges, one of
them cannot belong to any cycle, while the other one continues our level s cycle.
Repeating this argument k times, we get exactly the level s cycle, as required. We
also note that leaving level s cycle one has to move to a prefix level s+1 vertex.

This means that only one level s cycle can be contained in a path. The step 2 is
finished.

Now we can conclude the proof. Since there are no cycles in A, other than
level s cycles for 1 < s < m+1, and all such cycles are disjoint, we obtain that the
language L, is polynomial by Theorem 1.1. Since level 1 cycles can be achieved
from the initial state, and after some level s cycle a path can meet a cycle of level
at least s+1, we have that a maximum number of cycles along one path is m+1.
The statement of the theorem now follows from Theorem 1.1. 0
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