RAIRO-Theor. Inf. Appl. 43 (2009) 249-268 Available online at:
DOI: 10.1051/ita:2008026 wWww.rairo-ita.org

THREAD ALGEBRA FOR NONINTERFERENCE

THUY DuonNng Vu!

Abstract. Thread algebra is a semantics for recent object-oriented
programming languages [J.A. Bergstra and M.E. Loots, J. Logic Algebr.
Program. 51 (2002) 125-156; J.A. Bergstra and C.A. Middelburg,
Formal Aspects Comput. (2007)] such as C# and Java. This paper
shows that thread algebra provides a process-algebraic framework for
reasoning about and classifying various standard notions of noninter-
ference, an important property in secure information flow. We will
take the noninterference property given by Volpano et al. [D. Volpano,
G. Smith and C. Irvine, J. Comput. Secur. 4 (1996) 167-187] on type
systems as an example of our approach. We define a comparable no-
tion of noninterference in the setting of thread algebra. Our approach
gives a similar result to the approach of [G. Smith and D. Volpano, in
POPL’98 29 (1998) 355-364] and can be applied to unstructured and
multithreaded programming languages.

Mathematics Subject Classification. 68Q60.

1. INTRODUCTION

Thread algebra (TA) is an algebraic framework for the description and analy-
sis of multithreaded programming languages proposed recently by Bergstra and
Middelburg [6,7]. It is designed on top of basic thread algebra (BTA) [7], a the-
ory about sequential program behaviors, also introduced as basic polarized process
algebra (BPPA) in [5]. TA is a collection of strategic interleaving operators that
turns a sequence of threads into a single thread in BTA capturing essential aspects
of multithreading. It has been outlined in [5,6] how and why thread algebra is a
natural candidate for recent object-oriented and multithreaded program semantics
such as C# and Java.

Keywords and phrases. Noninterference, thread algebra, formal methods, security verification.

1 Sectie Software Engineering, University of Amsterdam, Kruislaan 403, 1098 SJ Amsterdam,
The Netherlands; tdvu@science.uva.nl

Article published by EDP Sciences © EDP Sciences 2008

http://dx.doi.org/10.1051/ita:2008026
http://www.rairo-ita.org
http://www.edpsciences.org

250 T.D. VU

One may argue that thread algebra with strategic interleaving is technically
less elegant in dealing with parallelism than process algebras such as CCS [18] and
ACP [4] with arbitrary interleaving. However, thread algebra is designed specif-
ically for multithreaded programs whose executions are on virtual machines that
make use of scheduling. Additionally, process algebras introduce nondetermin-
ism which might be a disadvantage for a programmer’s intuition. On the other
hand, in thread algebra, the programmer can always expect what might happen
by considering a significant collection of different interleaving strategies. TA is a
promising approach for the study of computer viruses and virtual machines [8,9].

This paper shows that thread algebra provides a process-algebraic framework for
reasoning about and classifying various standard notions of noninterference [15]
(see [22] for an overview), an important property in language-based security [2,11].
It characterizes systems whose execution does not reveal secret information. For-
malizing and analyzing this property becomes increasingly important because of
the privacy question raised in real-life applications such as mail and banking trans-
actions. Various definitions of noninterference have been introduced. However,
as stated in [22], “existing theoretical frameworks for expressing these security
properties are inadequate, and practical techniques for enforcing these properties
are unsatisfactory”.

Most approaches on noninterference in language-based security are based on
type systems [17,23,24]. The advantage of these approaches is that the type checker
only needs to work on program texts, so these approaches are decidable and easy
to implement. However, the programs must satisfy some structure. We take
the standard notion of termination-insensitive noninterference (TINI) defined by
Volpano et al. [24] as an example of our approach. We will present an alternative
definition of TINI in the setting of thread algebra. We prove soundness for this
definition, meaning that if a thread satisfies one of these properties then it satisfies
the noninterference property proposed by Goguen and Meseguer [15]. We show
that our approach accepts all secure programs that are typable by the type sys-
tem in [24], and can be applied to unstructured and multithreaded programming
languages. Furthermore, we can also use existing tools such as in [10,12,13] for
checking process-equivalence to develop our security checkers. In the paper, we
will also propose a particular interleaving strategy for thread algebra called the
cyclic strategic interleaving with persistence operator. This strategy invokes the
rotation of the thread vector only in the case that the current action is not a
high action. Hence, it maintains the order of the high actions, and therefore, the
analysis can be made compositional.

The structure of the paper is as follows. Section 2 recalls the basic concepts of
basic thread algebra and thread algebra. We also introduce the notion of noninter-
ference given by Goguen and Meseguer [15] and the type system of [24]. Section 3
characterizes actions for threads. Section 4 provides bisimulation up to a set of
high actions, in order to define the noninterference property given in Section 5.
Section 6 proposes the cyclic interleaving with persistence operator, and shows

THREAD ALGEBRA FOR NONINTERFERENCE 251

that TINI satisfies compositionality with respect to the cyclic interleaving with per-
sistence operator. The paper is ended with some concluding remarks in Section 7.

2. PRELIMINARIES

This section recalls from [5-7] the basic concepts of basic thread algebra (BTA)
and thread algebra (TA). We note that basic thread algebra was introduced as
basic polarized process algebra (BPPA) in [5]. Furthermore, we introduce a simple
programming language Lang which is used to illustrate our approach. We also
describe the earliest notion of noninterference given by Goguen and Meseguer [15]
and the type systems of [23,24] for checking this property.

2.1. BASIC THREAD ALGEBRA (BTA)

2.1.1. Primitives of Basic thread algebra.

Let 3 be a set of actions. Each action is supposed to return a boolean value
after its execution. BTA is constructed over ¥ by the following operators:
Successful termination: S € BTA yields successful terminating behavior.

Unsuccessful termination or deadlock: D € BTA represents inaction behavior.

Postconditional composition: (—) Jal>(—) with a € ¥. The thread P Jal>(Q
first performs a and then proceeds with P if true was returned and with @ oth-

erwise. In case P = @) we abbreviate this thread by the action prefix a o (—):
aoP=P<al>P.

Let BTAy, denote the set of finite threads which are made from S and D by means
of a finite number of applications of postconditional composition.

2.1.2. Infinite threads

Threads can be infinite. To define an infinite thread in BTA, we use a sequence
of its finite approximations.

Definition 2.1. For every n € N, the approximation operator 7, : BTAy —
BTAy; is defined inductively by

mo(P) = D,

Tnt1(S) = S,

Tp+1(D) = D,
Tn41(P dal Q) = m(P) dal m(Q)

A projective sequence is a sequence (F,), .y such that for each n € N,
’/Tn(PnJrl) = Pn

We note that for all (finite or infinite) threads P and @, P = @Q < Vn €
N:m(P)=m(Q). f P=aoao--- (P can do subsequently infinitely many

252 T.D. VU

actions a), then we write P = a®. Let BTAS be the set of all threads represented
by projective sequences in BTAy;. Then BTAy, C BTAY.

2.1.3. Regular threads
Regular threads in BTA are defined as follows.

Definition 2.2. A thread P is regular over X if P = E7, where E; is defined by
a finite system of the form (n > 1):

{Eizti|1§i§n,ti:Sorti:D OTtiZEﬂﬂaiEEir}

with E;, Fy € {E1,...,E,} and a; € X.

These regular threads are well-defined in BTAY (see [25]) and are used to
represent program behaviors.

2.2. THREAD ALGEBRA

Thread algebra (TA) is designed on top of BTA and is meant to specify a
collection of strategic interleaving operators, capturing some essential aspects of
multithreading. We assume that a collection of threads to be interleaved takes
the form of a sequence, called a thread vector. Strategic interleaving operators
turn a thread vector of arbitrary length into a single thread in BTA. This single
thread obtained via a strategic interleaving operator is called a multithread. We
recall from [6] the basic interleaving strategy of thread algebra called cyclic rota-
tion. This interleaving strategy works in a round-robin fashion which invokes the
rotation of a thread vector at every step. Furthermore, if one thread in the thread
vector deadlocks, the whole does not deadlock till all others have terminated or
deadlocked.

Let () denote the empty sequence, () stand for a sequence of length one, and
a ~ (the concatenation of two sequences. We assume that the following identity
holds: a~ () = () na =«

Definition 2.3. The axioms for the cyclic strategic interleaving ||.s operator
are given as follows:

)) = S

S) ~a) = lesi (@)

) = Sp([lesi (@)

l[esi (v~ (2)) D al> [|esi (@ ~ ()

Vo
s

D
2

I

where the auxiliary deadlock at termination operator Sp turns termination into
deadlock and is defined by

Sp(S) =
Sp(D)
Splr<aly) = Spx)<al> Sp(y).

I
Slw

THREAD ALGEBRA FOR NONINTERFERENCE 253

For a thread vector « of arbitrary (finite or infinite) threads o = oy ~ -+ - ~ ay,
llesi (@) is determined by its projective sequence (e.g. see [25,26]):

Tn([lesi (@) = Tn([lesi (Tn (1) ~ -+~ T (an))).

Example 2.4. Let P = a™ and @ = b* be two single threads. Then [|cs ((P)
(@) =aoboaoh---

2.3. THE PROGRAMMING LANGUAGE Lang

It has been outlined in [3,5,6] that program behaviors of sequential and mul-
tithreaded programming languages can be represented as threads in BTA. To il-
lustrate our approach, we consider threads as program behaviors of programs
written in a simple imperative programming language Lang which, similar to that
of [23,24], is defined as follows.

X)Y,... = z:=e|X;Y]
IF e THEN X ELSE Y END IF|
WHILE e DO X END WHILE

where e stands for a boolean or an arithmetic expression, whose syntax we do not
describe here.

We now consider assignments z:=e and tests e of Lang as the actions in X,
written as [x:=e] and (e). Then program behaviors of Lang are regular threads,
as illustrated in the following example.

Example 2.5. Let X and Y be given as follows.

X::= IF h==1 THEN 1:=1 ELSE 1:=0 END IF.
Y::= 1:=0;
WHILE h==0 DO
h:=0;
END WHILE;
1:=1.

The behaviors of X and Y, denoted by |X| and |Y|, are determined by: |X| =
([l:=1]0 S) q(h==1) > ([I:=0] 0 S) and |Y| = [[:=0] o P, where P = ([h:=0]o P) <
(h==0) & (:=1] o 5).

2.4. INPUT-OUTPUT TRANSFORMATIONS

In this section, we present the notion of input-output transformations of program
behaviors. This notion is based on the effect and yield of an action on a state space.
We assume the existence of a set Var of program variables, and a state space S
whose elements play the role of inputs as well as of outputs of programs (or threads)
in the programming language Lang. All results of the paper are related to these
two sets.

254 T.D. VU

2.4.1. The effect and yield of an action on the state space S

Suppose that upon the execution of a program, the values of a program variable
x are ranging over the set values(x). A state of a variable is a pair of the form
(x,v) with v € values(z). A state of the state space S is a set s consisting
of states of all variables in Var, in which there is a one-to-one correspondence
between variables and their states. If s is a state of the state space and (z,v) € s,
we write s.z.value = v.

For an action a € X, there is an operation effect, : S — S that changes
the state due to the execution of a called the effect operation, and an operation
Ya : S — {true, false} that determines a boolean value when «a is performed in a
state of S, called the yield operation.

We assume that if an action has some effect on the state space then its yield
always determines true. Formally, for an action a € ¥, if there exists a state s € S
such that effect,(s) # s then y,(s’) = true for all states s’ € S.

In the following, we will specifically define the effect and yield of an assignment
and a test on the state space S. An assignment [z:=¢e] may have effect on the state
space and always returns true after its execution. Formally, for all states s € S,

effeCt[a;:=e] (5) = S \ {<1’, s.x.value>} U {<:L', g(e)>}’
Ylaz:=e (5) = true

where o(e) is obtained by first replacing occurrences of variables y in the expression
e by s.y.value, and then calculating its value in the set values(x).

A test (e) has no effect on the state space, and can produce a negative reply.
Formally, for all states s € S, effect((s) = s and y;y = o(e), where o(e) is
obtained by first replacing occurrences of variables y in e by s.y.value, and then
computing the result in the set {true,false}.

2.4.2. Program behavior and input-output relations

Input-output transformations are derived from program behaviors rather than
from programs themselves. An action of a program behavior must be viewed as
a transformation of the states in a state space, producing a boolean whenever
applied. This action is taken as an input value of a behavior. The state reached
after the final action has been performed represents the output value of a com-
putation. Let D represent a failure value that can’t be computed. The notion of
input-output transformations can be captured formally as follows.

Definition 2.6. Given a finite thread P, a function Pe (=) : S — SU{D} which
represents what P computes on an input s in S is defined inductively as follows.
(1) Des=D,
(2) Ses=s,
(3) (aoP)es=Peeffect,(s),
(4) P<a>Qes=(aoP)esify,(s) =true, otherwise (ao Q) e s.

In case P is infinite, i.e. P = (P,), for (P,), a monotone sequence, P e s =
Ll,, Pn ®s. Note that the partial ordering < on S is defined by D < s for all s € S.

THREAD ALGEBRA FOR NONINTERFERENCE 255

If Pes = D for a state s € S then we say that this computation produces no
result. In other words, P e s = D precisely if for all n € N, m,,(P) e s = D.

The previous definition suggests an equivalence called input-output equivalence
for threads.

Definition 2.7. Two threads P and) are input-output equivalent (P ~5 Q)
over the state space Sif Pes=(Qes forall s €S.

We adopt the following convention on states of the state space S: if in a pro-
gram behavior only the variables x1, ...,z occur, we represent states simply as
[(x1,v1), ..., (xk,v)] with v; € values(z;) for 1 <i < k.

Example 2.8. Consider the program

X ::= WHILE x>0 DO
X:=x+1;
END WHILE.
Then the behavior | X | of X is defined as | X| = ([z := z+1]o| X |)<I(z > 0)>S. The
effect and yield of the actions [z:=x + 1] and (x > 0) are given as follows. For all
CAS Values(:c), effec‘t[x:=x+1]([<za ’U>]) = [<:Ca U+1>] and y[;c::x+1]([<xvv>]) = true.
Moreover, effect,~o)([(z,v)]) = [(z,v)], and yz~0)([(z,v)]) = true if v > 0 and
Y0y ([(x,v)]) = false otherwise. It is easy to see that if initially v > 0, then
the computation | X| e [(z,v)] goes on forever, i.e., X produces no result for every
input v of x that is greater than 0.

2.5. NONINTERFERENCE BASED ON INPUT-OUTPUT TRANSFORMATIONS

The earliest definition of noninterference of security information flow was given
by Goguen and Meseguer [15]. Following the idea of [15], we provide a definition
of noninterference based on input-output transformations for threads in BTA.

We suppose that program variables in Var are classified into two security classes
Vary, (low) and Vary (high), Var,NVary = () and Varp,UVary = Var. We provide
some notions of equivalence for states and threads based on security classes as
follows.

Definition 2.9. Two states s and t of the state space S are low equivalent,
denoted by s zé t, if for all [€ Vary, s.l.value = t.l.value, otherwise s 7% t.
Similarly, two states s and ¢ of the state space S are high equivalent, denoted
by s =8 t, if for all h € Varg, s.h.value = t.h.value, otherwise s #& t.

Definition 2.10. Two threads P and @ are low quasi-equivalent (P zé Q)
over the state space S if for all low equivalent states s and ¢ (s :é“ t), Pes =
Qet=Dor Pesand @ et are low equivalent (P e s :SL Qet).

Informally speaking, a program is secure if its low output does not depend on
its high input. This notion is translated to threads in BTA as follows.

Definition 2.11. A thread P is noninterfering (P € NI) if it is low quasi-
equivalent to itself. A program is secure if its behavior is noninterfering.

256 T.D. VU

Example 2.12. Let h € Vary and [€ Vary. Consider the program behavior
below.

Q = [=1+1]0Q,

R = [l:=1l-1]oR.

It can be derived that P ~g D. Hence P ~% P. Thus, P € NI.

The previous example shows that non-termination implies NI. The following
example illustrates insecure programs.

Example 2.13. Let h € Vary and [€ Vary. Consider the programs X and Y
given in Example 2.5.

| X| = ([:=1]08) D (h==1) & ([l:=0] 0 5)
| [1:=0] o P

where P = ([h:=0]o P) I(h==0)>([l:= 1]0.5). One can check that Y produces no
result in the case that the input of A is 0. Furthermore, X and Y are not secure,
since

|X| i [(ha 0>7 (lv 0)] = [<h7 0)) <Za O>] while |X| ® [<h7 1)) <Za O>] = [<h7 1>a
|Y| e [(h,0),(l,0)] = D while |Y|e[(h,1),(l,0)] = [(h, 1),

2.6. NONINTERFERENCE BASED ON TYPE SYSTEMS

The definition of noninterference given by Goguen and Meseguer [15] is pre-
cise, but might require a complex computation. To simplify the checking, the
approaches based on type systems (see [22] for an overview) have been developed.
In these approaches, if a program is well-typed according to the typing rules of a
type system then it has the noninterference property. This section introduces the
type system of [24] in order to compare their results with ours later.

We suppose that there are two security classes £ (low) and H (high), and a
partial order C between security classes with £ C H (L # H) (L is a subtyping of
H). The types used in the type systems of [24] are:

(data types) T ou= L | H
(phrase types) p == T | Tvar | 7Tcmd

Here type 7 var is the type of a program variable. Type judgments are of the form
v F X : 7cmd where X is an expression or a program and -y is a mapping from
variables to types of variables, i.e. v(x) = Lvar if © € Vary, and vy(z) = Hvar
otherwise. The typing rules of [24] are given in Table 1. We assume that all
constants have type £ (rule (INT)). Furthermore, we omit typing rules for some
expressions since they are similar to rule (SUM).

According to these typing rules, every test and every expression is well-typed.
In particular, a test (or an expression) has type H if it contains a high variable,
otherwise it has type L.

THREAD ALGEBRA FOR NONINTERFERENCE 257

TABLE 1. Typing and subtyping rules.

(IDENT) m
Fx:p

(INT) Fn:L

Fe:rvar
(R-VAL) _

Fe:r

Fei:7 Feg:r

(SUM) ! 2
Fel+ex:T

Fxz:7var Fe:T

(ASSIGN)
Fax:=e:7cmd

Foer: d Feo: d

(COMPOSE) Lrem 2-Ten
F ;e 0 Temd

1 Fe:m Fep:7emd Feg:7cemd

F IF e THEN c¢; ELSE ¢; END IF: 7cmd

Fe:7r Fe:7cmd

(WHILE)

= WHILE e DO ¢ END WHILE: 7 cmd
(BASE) LCH

(REFLEX) pCp

(CMD) _n&mn
71 cmd O 79 cmd
X : C

(SUBTYPE) pL_p1 = P2

FX:po

Assignments of the form z:=e, where x € Vary, and e contains a high variable,
are untypable in this type system because of the rule (ASSIGN). By this rule,
x:=e is accepted and has type £ cmd if both = and e have type L, or it is accepted
and has type H cmd if = has type H.

The meaning of v F X : 7cmd is that type 7 is a lower bound for the security
level of the assigned variables of X. Hence, if the condition of a well-typed con-
ditional statement (or a well-typed while-loop) has type H then every assigned
variable contained in its branches (or its body) has type H as well.

258 T.D. VU

Example 2.14. We consider the insecure program X taken from Example 2.5.
X ::= IF h==1 THEN 1:=1 ELSE 1:=0 END IF

where | € Vary and h € Vary. This program is untypable in the type system
of [24]. Here the condition h == 1 has type H. According to rule (IF), X is
accepted only if both [:=0 and [:=1 have type H cmd or a lower one. However,
these assignments have type £ cmd which contains type H cmd (rule (CMD™)).

Example 2.15. Similar to the previous example, the following while-loop
statement

WHILE h==1 DO
1:=0;
END WHILE

is not well-typed, either.

We note that the typing rules in Table 1 respect termination-insensitive nonin-
terference. That is to say, a well-typed program is secure by these typing rules if
the program terminates successfully.

3. CHARACTERIZING ACTIONS WITH RESPECT TO SECURITY

This section characterizes actions of a thread as insecure, secure, invisible, low
and high actions with respect to security.

We consider the following examples. The untypable action [l:=h] with [€ Var,
and h € Vary is insecure in our approach because it reveals information of h. The
assignment [I:=1] is a low action because it has effect on the low subspace. The
test (h==1) and the assignment [h:=1] are regarded as high actions since they
have something to do with the high subspace. Finally, the secure actions that
have no effect on the low subspace such as tests and high actions are invisible.
Formally:

Definition 3.1.

1. An action a is secure if it does not reveal any high-security informa-
tion, i.e. effect,(s) =% effect,(t) for all low equivalent states s,t € S
(s =£ 1.

2. A secure action a is low if it has effect on the low subspace, i.e.
effect,(s) #& s for some s € S.

3. A secure action a is invisible if it has no effect on the low subspace, i.e.
effect,(s) =L s for all states s € S.

4. An invisible action a is high if it has effect or yield on the high sub-
space, i.e. effect,(s) #& s for some state s € S, or y,(s) # ya(t) for
some states s,t € S such that s £ ¢.

We note that the terminology that actions are secure (or not) in Definition 3.1 is
obtained from the standard terminology of secure information flow of [24].

THREAD ALGEBRA FOR NONINTERFERENCE 259

Let X g be the set of secure actions, Y5 the set of invisible actions, X, the set of
low actions and X the set of high actions. Then Xg =X;UX;, C X, X;NX, =0
and EH g 2[.

Lemma 3.2. Let a be an action in 3, a ¢ Xg. Then for all low equivalent states
s,t €S, Yal(s) = ya(t).
Proof. We distinguish three cases:
1. s=ft. Since s =L t, s =t. Thus, y.(s) = ya(t).
2. s £ t and a has some effect on the state space. Then y,(s) = ya(t) =
true.
3. s #H t and a has no effect on the state space. If y,(s) # yaq(t) then a has

yield on the high subspace. By Definition 3.1, a is a high action. This
contradicts the assumption that a ¢ Xg. Therefore, y,(s) = yq(¢). O

To choose secure, invisible, low and high actions, let Xye11¢ypea be the set of well-
typed actions by the typing rules in Table 1, ¥, the set of tests, ¥ cnq the set
of assignments with type £ cmd, and 3344 1cna the set of actions with type H and
H cmd (see Sect. 2.6). Then:

Lemma 3.3.
1. Zwelltyped c ES-
2. Yyt Hema UXcyn C X1
3. X C¥rema XL UX = Xg.
4. Yy C Y iHena SEgpUX =X,

Hence one can choose the sets Mg of secure actions, X7, of low actions and X
of high actions as the sets Yyei1typed, 2ccma and Y44 Hena, Tespectively. The set
> of invisible actions can be chosen as 7 = ¥y U X,42. The previous lemma
shows that these decisions are merely approximations of Yg, X1, ¥y and Xj.
However, we can extend or restrict these sets with certain associated actions, in
order to optimize them. The closer we get to the optimal solutions, the more
secure programs can be accepted. For instance, the set ¥ g can be extended with
actions of the form [l:=h — h]. The set ¥y can be restricted by removing the
actions (I + h > h).

4. LABELED TRANSITION SYSTEMS OVER BTA

In this section, we define a labeled transition system over BTA, and a bisimula-
tion equivalence that is used for our definition of noninterference.

4.1. LABELED TRANSITION SYSTEMS

A labeled transition system (LTS) with termination S and deadlock D
is a pair (P, —) with P a class of threads, and —C P x (X x {T,F'}) x P a set of
transitions. We write P 2% Q with a € ¥ and x € {T, F} for (P, (a, k), Q) €—-.
An LTS is a finite-state (regular) LTS if both P and ¥ are finite.

260 T.D. VU

FIGURE 1. Examples of bisimulation with I = {i,;} and a € 3.
The dashed lines represent bisimulation up to I between threads.

For a state P, if P = S then it is a termination state. If P = D then it is a

deadlock. If P = Py <a> Py then P %% Py and P 25 P,

We note that since program behaviors in the programming language Lang can
be represented as regular threads, they can always be associated with a finite-state
LTS.

4.2. BISIMULATION UP TO [

Let I C X be a set of actions. The relation bisimulation up to I identifies
threads behaving the same from the view of the actions which are not in I. In
other words, this bisimilarity is obtained by ignoring the presence of actions of I.
We will use the following notion to define bisimulation up to I.

Definition 4.1. Let P be a thread. A thread @ is a residual thread of P, written

ao,Ko ai,R1 An—1,Rn—1

as P = @, if there is a path of transitions P = Py — P
Q with n > 0. We write P = Q if a; € I for all 1 < i < n.

n —

Definition 4.2. A bisimulation up to [is a symmetric binary relation B on
threads satisfying:

1. If (S, Q) € B then there exists a path @ LS.

THREAD ALGEBRA FOR NONINTERFERENCE 261

2. If (P,Q) € B and P 2% P’ then either:
(a) a €l and (P',Q) € B, or:
(b) there exists a path @ L Q1 X5 Q' such that (P,Q,) € B and
(P, Q") €B.
Two threads P and @ are bisimilar up to I, denoted by (P < @), if there is a
bisimulation up to I relation B such that (P, Q) € B.

We note that in Clause 2(b) of the above definition, it is allowed that a € I.
Furthermore, in case I = (), bisimulation up to I coincides with bisimulation
equivalence proposed by [20].

Proposition 4.3. Bisimulation up to I is an equivalence.
Figure 1 illustrates the notion of bisimulation up to I between threads.
Proposition 4.4. Let I CI' C Y. Then £;Cey/.

We omit the proof of the previous proposition, since it is similar to the proof
for branching bisimulation [14] given in [1].

5. TERMINATION-INSENSITIVE NONINTERFERENCE IN TA

We assume the existence of a set I of invisible actions that contains the set X g
of high actions (Xg C I C X;). In this section, we present termination-insensitive
noninterference up to I (TINI;) for threads. We prove soundness for our definition
and show that we accept all secure programs that are typable in the type system
of [24].

Let o(P) denote the set of actions occurring in a process P. We consider the
following programs.

X ::=1:=h
Y ::= IF h==1 THEN 1:=0 ELSE 1:=1 END IF
Z ::= IF h==1 THEN 1:=0 ELSE 1:=0 END IF

where [€ Vary, and h € Vary are low and high variables. Program X is insecure
and is not accepted by the type system of [24] since the assignment [:=h reveals
the value of h. The insecure program Y is untypable in this type system, too. It
is because the type of the assigned variable [in the branches of the conditional
statement is lower than the type of the condition h==1 (see Sect. 2.6). By the
reason of the same fact, program Z is rejected by these type systems although
it is secure. In our approach, we also reject X and Y, but accept Z. Because
this program behaves the same after the execution of (h==1). Hence, an attacker
cannot learn the value of h of program Z through branching on the condition
(h==1).

We then propose a notion of termination-insensitive noninterference for threads
as follows. A thread is termination-insensitive noninterfering if its actions are
secure. Furthermore, its behavior from the view of low actions, is always the same
regardless of the returned boolean value after the execution of a high action is.
Formally:

262 T.D. VU

Definition 5.1. Let Xy C I C X;. A thread P is termination-insensitive
noninterfering up to I (P € TINI;) if

1. all actions of P are secure, i.e. o(P) C Xg,
2. for all residual threads @Q of P such that Q =5 Q' with a € $x, Q 25 Q'.

In the definition above, in case I = X, TINI; would accept the most secure
programs, while in case I = X, TINI; would accept the least secure programs.
For instance, consider the following example.

Example 5.2. Let U, V and W be programs given as follows.

U ::= IF h==1 THEN h:=h+1 ELSE h:=h-1 END IF.
V ::= 1:=0;
IF h==0 THEN

IF 1==1 THEN h:=1 ELSE h:=2 END IF;
ELSE

h:=3;
END IF;
WHILE h<10 DO

h:=h+1;

END WHILE.
Program U and W are accepted in both cases I = ¥; and I = ¥y. However,
program V' is only accepted in case I = ¥;. This program is rejected by TINIy,,
since it will proceed with the test ({ == 1) ¢ Xy if h = 0, while in the other case
it will not.

=
I

Proposition 5.3. Let Xy C I CI' CX;. Then TINI; C TINI.

Proof. This follows from Proposition 4.4. O

We now show that in case I = X, we accept all secure programs that are
accepted by the type system of [24].

Theorem 5.4. Let X be a program in the programming language Lang. If X is
well-typed by the typing rules in Table 1 then |X| € TINIy,.

Proof. Since all actions in X are well-typed, they are secure. Let @ be a residual
thread of X such that @ RuN Q' with a € Xy. By the typing rules of Table 1,
if a is the condition of a conditional statement (or a while-loop) then all the
assignments within the branches (or the body) of that statement are high. Hence
there exists a residual thread P of @ satisfying the following property: for every
path Q = Qo o1 Q1 W from Q, there exists n € N such that @, = P
and a; € Xy for all i < n. We define that (Q;, P) € B for all i < n. Then B is a

bisimulation up to Xj. Hence @ €y, Q'. By Definition 5.1, | X| € TINIy,. O

It should be noticed that TINI; will accept insecure programs in certain cases
as can be seen in Example 5.5.

THREAD ALGEBRA FOR NONINTERFERENCE 263

Example 5.5. We consider the program below:
T ::= WHILE h>0 DO
h:=h+1;
END WHILE
where h € Vary. It can be derived that T € TINI; for all sets Xy C I C Xj.
However, T' ¢ NI since | X| e [(h,0)] = [(h,0)] while | X| e [(h,1)] = D.
The program in Example 5.5 exemplifies a termination-leak insecure program.
To preserve the noninterference property for TINI; we impose a condition that the
program terminates successfully as in [24], given as follows.

Definition 5.6. A thread P terminates successfully if for all s € S, Pes # D.
Let BTAL be the set of all threads that terminates successfully.

Definition 5.6 implies that for a thread P € BTA; and a state s € S, there is
a finite deterministic path (Py = P, sy = s) 2% (Py,s1) =5 ... " 2570 (P, =
S, $n) satisfying that P; Y P, ki = Ya; (8i) and s;41 = effect,,(s;) for all
0<i<n.
Theorem 5.7 (soundness of TINI;). Let ¥y C I C X;. Then TINI; N BTA%
C NI.
Proof. Let P € TINI; ﬂBTAg. We show that for all low equivalent states s,r € S
(s =L r), Pes =L Per. Since P terminates successfully, there are two finite
deterministic paths obtained by the computations of P with s and r, given as in
the following.

ao,ko

(Py=P,sp=5) =S (P, s) — (P1,s1) A (P, =8, sy,) and
bo, bm—1,Ym—
(Qo=Pro =7) 2 (Q,76) X (Qu,m1) =+ " =5 (Qm = S,70m)

where P; L P!, P, &1 P/ and P} 1 P41 for 0 < i < n, and where Q; L Q;,
Q; =1 Q) and Q) #5 Qj41 for 0 < j < m. We prove by induction on i that
P, 25 Q; and s; :é r; for all 0 < i < n. We consider the following possibilities:
1. i=0. Then Py = Qo = P. Thus, Py €5 Qo and s = s =L r =ry.
2. Assume that P, €7 @Q; and s; :é r;. We prove that P;;1 €5 Q;+1 and
Sit1 :é ri+1. One can derive that P/ 5 Q}. Moreover a; = b; because

An—1,Rn—1
—/

of P/ Y P, Q' ki Qit1, P! 1 Piy1 and Q) %5 Qi41. Furthermore,

by Definition 5.1, a; ¢ H. Since invisible actions do not have effect on the

low space, s, =& s; =L r; =L r]. Tt follows from Lemma 3.2 and s, =& r/
that ki = ya,(s}) = yp,(r;) = . This implies that P41 <5 Q11 and
sip1 = effect,, (s]) =k= effectq, (r]) = rij1.

Hence P; 25 @; and s; :é r; for all 0 < ¢ < n. Since P, = Q, = S, n = m.

Therefore, P e s :é Sn :é T :é: P e r. By Definition 2.11, P € NI. O

Our definition of TINT can be applied to unstructured programming languages
because they are based on program behaviors. Furthermore, it is also suitable for
considering noninterference properties in multithreaded languages since a multi-
thread is also a single thread in thread algebra.

264 T.D. VU

6. AN INTERLEAVING STRATEGY WITH RESPECT
TO NONINTERFERENCE

It would be natural if termination-insensitive noninterference is compositional
with respect to strategic interleaving operators. Unfortunately, it is shown in the
following example that the compositionality property does not hold for TINI; with
respect to the simplest interleaving scheduling like cyclic rotation.

Example 6.1. Let h € Vary,l € Vary. Let a and [be two single threads
defined as

(([h:=h 4+ 1] o [I:=0] 0 S) < (h==1) > ([I:=0] 0 S);
[l:=1] o [l:=2] 0 S.

o
g

Let I = Xy = {[h:=h + 1], (h==1)}. It can be checked that o and [are secure.
However ||si (v ™~ (3) is not secure, since

lesi (¢ ~ B) = ([l:=1] o [h:=h + 1] o [l:=2] o [l:=0] 0 S)
S(h==1)t>
([l:=1] o [l:=0] 0 [I:=2] 0 5)

which produces [=0 if h =1, and | = 2 otherwise.

To preserve compositionality for TINI;, we propose in this section a variant of
the cyclic interleaving operator called the cyclic strategic interleaving with persis-
tence operator (||;) for thread algebra. This strategy is similar to the current
thread persistence operator of [6] and will not invoke the rotation of a thread
vector if the current action is considered persistent in I. We will show that bisim-
ulation up to I is a congruence under this interleaving strategy. And therefore,
TINI; satisfies compositionality with respect to the cyclic strategic interleaving
with persistence operator.

6.1. THE CYCLIC STRATEGIC INTERLEAVING WITH PERSISTENCE OPERATOR

I

csi

Cyclic strategic interleaving with persistence ||, is defined formally as follows.

Definition 6.2. The axioms for the cyclic strategic interleaving with per-

sistence ||.; operator are given for finite threads by
lesi (0) = 5
lesi ((S) ~ @) = |5 (@)
e ((D) ~ a) = Sp([&s (@)
lesi ((zay) ~va) = L ({z) va)Da> |l () ~a)ifaeT
e ((zDay) ~va) = L (@ () Da> ||L; (@~ (y)) otherwise.

THREAD ALGEBRA FOR NONINTERFERENCE 265

We note that |2, =|csi. For a thread vector a of arbitrary (finite or infinite) threads
a=a1 oy, ||l (@) is determined by its projective sequence:

o (llési (@) = T (|l (mn(on) A -~ ().

Example 6.3. We now return to Example 6.1. The multithread ||Z; (o« ~) is
secure, since

|L; (@~ B)= ([hi=h+1]o[l:=0]0 [l:=1] o [l:=2] 0 5)
Q(h==1)
([l:=0] o [l:=1] 0 [I:=2] 0 S)

which always produces [=2.

6.2. CONGRUENCE WITH RESPECT TO TINI;

This section shows that bisimulation equivalence is a congruence with respect

to ||Z,; if all threads are deadlock-free.

Definition 6.4. A thread is deadlock-free if it does not contain a residual dead-
lock D.

Lemma 6.5 (congruence with respect to TINI;). Let Xy C I C Xy, and let P;
and Q; (1 <i<n) be deadlock-free threads such that P; <1 Q;. Then

et ((P1) ~ (Po) -~ (Pn)) =1l ((Q1) ™ (Q2) A -+~ (Qu)).

Proof. Let B be a binary relation defined as follows. For threads P and Q, (P, Q) €
B if there are sequences « and (3 of the same length n for some n € N such that
P =||L; (o), Q =||L; (B), and for all process components «; and f3; of a and J3,
«; 21 B; respectively. We show that B is a bisimulation up to I.
1. P=S. Then for all i, 1 <1i <mn, a; = S. Since, 3; €5 «;. It is not hard
to see that there exists a finite path @ L Q' with Q' = S.
2. P25 P Since aj # D for all 1 < j < n, there exists 7 such that for
all j <4, aj = 5 and o 2% z. Furthermore, P =L (i~ ay)
and P’ =|L; (x ~ aiz1 ~ -+ ~ ap). Since for all j < i, a; 21 G5,

csi

there exist finite paths (3; LS. Since a; €1 3, there exists a finite path
ﬂiéﬂg L8y with a; ©7 8 and @ <7 y. Let Q1 =||%; (8) ~ -~ ~ By)

csi

and Q' =|L; (y ~ Bix1 ~ -+ ~ B,). Then Q =N Q1 25 Q' with

P e Ql and P’ =3 QI.
Thus, B is a bisimulation up to I. O

One may expect that Lemma 6.5 also works on the case that threads can have
deadlocks. However, the following example shows that it is not the case.

266 T.D. VU

Example 6.6. Let P :||({:;1} ((i*°) ~ (a0 S)) and Q :HE;} ((D) ~ (a0 S)). Then

P =i* and Q = ao D. It is obvious that P ¢;; @ although i* <, D and
aoS egyaos.

6.3. COMPOSITIONALITY OF TINI;

We now show that TINI; satisfies compositionality with respect to ||£Si, provided
that the threads contain no deadlocks.

Theorem 6.7 (compositionality of TINI;). Let Xy C I C Xy and let P; € TINI;
be deadlock-free threads for all 1 < i <n. Then
I ((P1) ~ (P2 ~ -~ (P,)) € TINI;.

csi

Proof. Let P =||I, ((P1) ~ (P2) ~ -+ ~ (P,)). We show that for all residual
threads Q of P,if Q = Q' <a™> Q" with a € X then Q' 27 Q”. It can be derived
that Q@ = S or Q =L, (Qi,) ~ (Qi,) ~ --- ~ (Qi,,)), where Qy is a residual

csi

thread of P for 1 < k <mn. Let Q;, = le <al Q;’l Then

Q= i (@Q5,) ~(Qin) ~ -~ (Q)
Q" = & (@) A {Qin) ~ o (@)

Since P;, € TINI;, Q; <7 Qf . It follows from Lemma 6.5 that Q" =; Q".
Therefore, P € TINI;. O

7. CONCLUDING REMARKS

In this paper, we have interpreted the notion of termination-insensitive nonin-
terference, comparable to the one given on type systems in [24], in thread algebra.
We have proven soundness for our definition, and shown that we accept all secure
programs that are accepted by the type system of [24]. Hence, thread algebra
is suitable as a process-algebraic framework for formalizing and analyzing secu-
rity properties in multithreaded languages. Furthermore, it is also an applicable
framework for considering security properties for unstructured programs.

In order to preserve compositionality for termination-insensitive noninterfer-
ence, we have proposed the cyclic interleaving with persistence operator, and
shown the analysis can be made compositional if all high actions are persistent
and the threads are deadlock-free.

For checking the noninterference properties presented in this paper, one can
apply existing techniques [16,19] and existing tools [10,12,13] for checking process-
equivalence to develop our security checkers.

We note that other standard notions of noninterference such as termination-
sensitive noninterference [23] and timing-sensitive noninterference [21] are also
modeled in thread algebra (see e.g. [26]). We hereby show that previous work on
security for sequential and multithreaded systems can be reconsidered in thread
algebra.

(1]

(9]

[10]

[11]

[12]

[13]

THREAD ALGEBRA FOR NONINTERFERENCE 267

REFERENCES

T. Basten, Branching bisimulation is an equivalence indeed. Inform. Process. Lett. 58 (1996)
333-337.

D.E. Bell and L.J. La Padula, Secure computer systems: mathematical foundations and
model. Tech. Rep. M74-244, MITRE Corporation, Bedford, Massachussets (1973).

J.A. Bergstra and I. Bethke, Molecular dynamics. J. Logic Algebr. Program. 51 (2002)
125-156.

J.A. Bergstra and J.W. Klop, Fized point semantics in process algebra. Technical Report
IW 208, Mathematical Center, Amsterdam (1982).

J.A. Bergstra and M.E. Loots, Program algebra for sequential code. J. Logic Algebr. Pro-
gram. 51 (2002) 125-156.

J.A. Bergstra and C.A. Middelburg, Thread algebra for strategic interleaving. Formal As-
pects Comput. 19 (2007) 445-474. Preliminary version: Computer Science Report PRG0404,
Sectie Software Engineering, University of Amsterdam.

J.A. Bergstra and C.A. Middelburg, A thread algebra with multi-level strategic interleaving.
Theor. Comput. Syst. 41 (2007). Preliminary versions: in CiFE, edited by S.B. Cooper, B.
Loewe and L. Torenvliet. Lect. Notes Comput. Sci. 3526 (2005) 35-48; Computer Science
Report 06-28, Department of Mathematics and Computing Science, Eindhoven University
of Technology.

J.A. Bergstra and C.A. Middelburg, Maurer computers for pipelined instruction processing.
J. Math. Struct. Comput. Sci. 18 (2008) 373-409.

J.A. Bergstra and A. Ponse, A bypass of Cohen’s impossibility result. in Advances in Grid
Computing-EGC 2005, edited by P.M.A. Sloot, A.G. Hoekstra, T. Priol, A. Reinefeld and
M. Bubak. Lect. Notes Comput. Sci. 3407 (2005) 1097-1106.

S.C.C. Blom, W.J. Fokkink, J.F. Groote, I.A. van Langevelde, B. Lisser and J.C. van de
Pol, pCRL: a toolset for analysing algebraic specifications. in Proc. 13th Conference on
Computer Aided Verification-CAV’01, edited by G. Berry, H. Common and A. Finkel. Lect.
Notes Comput. Sci. 2102 (2001) 250-254.

D.E. Denning, A lattice model of secure information flow. Commun. ACM 19 (1976)
236-243.

R. Focardi and R. Gorrieri, Automatic compositional verification of some security properties
for process algebras, in Proc. of TACA’96, edited by T. Margaria and B. Steffen. Lect. Notes
Comput. Sci. 1055 (1996) 111-130.

R. Focardi and R. Gorrieri, The compositional security checker: A tool for the verification of
information flow security properties. IEEE Transactions on Software Engineering 23 (1997)
550-571.

R.J. van Glabbeek and W.P. Weijland, Branching time and abstraction in bisimulation
semantics. J. ACM 43 (1996) 555-600.

J. Goguen and J. Meseguer, Secure policies and security models, in Proc. IEEE Symp.
Security and Privacy (1982) 11-20.

J.F. Groote and F.W. Vaandrager, An efficient algorithm for branching bisimulation and
stuttering equivalence, in Proc. ICALP 90, edited by M.S. Paterson. Lect. Notes Comput.
Sci. 443 (1990) 626—638.

A.C. Meyers, Jflow: Practical mostly-static information flow control, in Proc. ACM Symp.
on Principles of Programming Languages (1999) 228-241.

R. Milner, Communication and Concurrency. Prentice Hall (1989).

R. Paige and R. Tarjan, Three partition refinement algorithms. STAM J. Comput. 16 (1987)
973-989.

D.M.R. Park, Concurrency and automata on infinite sequences, in Proc. 5th GI Conference,
edited by P. Deussen, Lect. Notes Comput. Sci. 104 (1982) 167-183.

A. Sabelfeld and H. Mantel, Static confidentiality enforcement for distributed programs. in
Proc. Symp. on Static Analysis. Lect. Notes Comput. Sci. 2477 (2002) 376-394.

268 T.D. VU

[22] A. Sabelfeld and A. Myers, Language-based information flow security. IEEE J. Sel. Areas
Commaun. 21 (2003) 5-19.

[23] G. Smith and D. Volpano, Secure information flow in multi-threaded imperative languages,
in Proc. POPL’98 29 (1998) 355-364.

[24] D. Volpano, G. Smith and C. Irvine, A sound type system for secure flow analysis. J.
Comput. Secur. 4 167-187 (1996).

[25] T.D. Vu, Denotational semantics for thread algebra. J. Logic Algebr. Program. 74 (2007)
94-111.

[26] T.D. Vu, Semantics and applications of process and program algebra. Ph.D. thesis, Univer-
sity of Amsterdam (2007).

Communicated by Giuseppe Longo.
Received May 8, 2007. Accepted September 11, 2008.

	Introduction
	Preliminaries
	Basic thread algebra (BTA)
	Thread algebra
	The programming language Lang
	Input-output transformations
	Noninterference based on input-output transformations
	Noninterference based on type systems

	Characterizing actions with respect to security
	Labeled transition systems over BTA
	Labeled transition systems
	Bisimulation up to I

	Termination-insensitive noninterference in TA
	An interleaving strategy with respect to noninterference
	The cyclic strategic interleaving with persistence operator
	Congruence with respect to TINII
	Compositionality of TINII

	Concluding remarks
	References

