RAIRO-Theor. Inf. Appl. 43 (2009) 189-207 Available online at:
DOI: 10.1051/ita:2008024 wWww.rairo-ita.org

ON THE POWER OF RANDOMIZATION FOR JOB SHOP
SCHEDULING WITH k-UNITS LENGTH TASKS*

ToBIAS MOMKE!

Abstract. In the job shop scheduling problem k-units-J,, there are
m machines and each machine has an integer processing time of at most
k time units. Each job consists of a permutation of m tasks correspond-
ing to all machines and thus all jobs have an identical dilation D. The
contribution of this paper are the following results; (i) for d = o(v/D)
jobs and every fixed k, the makespan of an optimal schedule is at most
D + o(D), which extends the result of [3] for kK = 1; (ii) a randomized
on-line approximation algorithm for k-units-J,, is presented. This is
the on-line algorithm with the best known competitive ratio against an
oblivious adversary for d = o(v/D) and k > 1; (iii) different process-
ing times yield harder instances than identical processing times. There
is no 5/3 competitive deterministic on-line algorithm for k-units-Jp,
whereas the competitive ratio of the randomized on-line algorithm of
(ii) still tends to 1 for d = o(v/D).

Mathematics Subject Classification. 68W20,68W25.

1. INTRODUCTION

In job shop scheduling, there are m machines and d jobs. Each job consists
of an individual sequence of tasks, and each task is associated with exactly one
machine. Each machine can only process the task of one job at a time. Before a
task of a job J can be performed, all preceding tasks of J have to be completed.
Minimizing the makespan of job shop scheduling is known to be NP complete.
Willamson et al. [8] showed that not even a (5/4 —)-approximation algorithm for
any € can exist.

Keywords and phrases. On-line algorithms, randomization, competitive ratio, scheduling.

* Supported in part by SNF grant 200021-107327/1.

I Department of Informatics, ETH Zurich, ETH Zentrum, 8092 Ziirich, Switzerland;
tobias.moemke@Qinf.ethz.ch

Article published by EDP Sciences © EDP Sciences 2008

http://dx.doi.org/10.1051/ita:2008024
http://www.rairo-ita.org
http://www.edpsciences.org

190 TITLE WILL BE SET BY THE PUBLISHER

In this paper, we consider a generalized version of the well studied job shop
scheduling problem wunit-J,,, with m different machines [6] in order to compare
randomization with determinism. We call the generalized problem k-units-J,,,
because we allow a processing time of up to k time units for each task.

The problem k-units-.J,, is similar to acyclic job shop scheduling (see [2]) and
relates to finding optimal schedules for routing packages with variable length.
Its on-line version turned out to be very suitable for demonstrating the power
of randomization. In k-units-J,,, we consider jobs consisting of m tasks. Each
machine processes exactly one task of each job. Therefore, all jobs contain the
same tasks and the jobs only differ by the permutation of the tasks. As in the
general job shop scheduling problem, each machine processes only one task at a
time and each job must be executed on the machines in the given order without
preemption. The time to process a task is a positive integer number of up to k
time units and determined only by its corresponding machine. The objective is to
minimize the makespan over all feasible solutions, i.e., the time to process all jobs
on all machines.

Obviously, a lower bound on the makespan is the time to process one job with-
out delays, i.e., the sum of the processing times of all machines, known as the
dilation D.

For m > 3, the problem wnit-J,, is NP-hard, see [7]. This directly implies the
NP-hardness of k-units-.J,,,. In the on-line versions of the problems, the fixed order
of tasks that a job has to complete is hidden for the on-line algorithm and revealed
one by one. Thus, each time the next task is known, but not the following ones.

Hromkovié et al. showed in [3] that for d = o(y/m) the makespan of an optimal
schedule of unit-J,, is at most m + 2dy/m. They also presented a randomized
on-line algorithm for unit-J,, with d = o(y/m) which is (1 4+ 2d/+/m)-competitive
against an oblivious adversary and has linear runtime. We generalize the results
of [3] for the problem k-units-.J,,. Furthermore we analyze upper and lower bounds
on the makespan for some special cases which enables us to compare randomization
with determinism. The contribution of this paper can be summarized as follows:

(i) we provide a randomized (1 +d - (k 4 3)/(2V/D))-competitive on-line ap-
proximation algorithm k-OLR,, for k-units-J,, that runs in linear time.
For d = o(v/D) jobs, its competitive ratio amounts to 1 4 o(1). This
demonstrates the power of randomness for k-units-J,, because even for
unit-J,, we do not know any off-line approximation algorithm with an
approximation ratio tending to 1;

(ii) for the case d = 2 we give an on-line algorithm that solves k-units-.J, for
any instance consuming at most (3D + k)/2 unit steps. For every deter-
ministic on-line algorithm, we present a hard instance with two jobs that
inherently exploits the structural properties of k-units-J,,. The length of
the computed schedules is at least

D-(k—1)+1

D
* 2k -1

ON THE POWER OF RANDOMIZATION FOR JOB SHOP SCHEDULING 191

If k£ is large and D > k, the difference between the upper and lower bound
is negligible;

(iii) we show that for every deterministic on-line algorithm for k-units-J,, there
is an input instance with three jobs such that the resulting makespan is
at least 5D

D+? *D/(?)k*?),

(iv) we show that there is no 5/3 competitive deterministic on-line algorithm
for k-units-J,, whereas for a constant k£ and 0(\/5) jobs, the competi-
tive ratio of the randomized on-line algorithm k-OLR,,, tends to 1. This
demonstrates that for k-units-J,, randomization is very powerful.

2. PRELIMINARIES

An input instance of k-units-.J,, consists of m machines oq,...,o,,, their pro-
cessing times p1,pa, ..., Pm, where p; € {1,2,...,k} for j =1,2,...m, and d jobs
J1,...,Jq for some d > 2 represented as permutations of (1,2,...,m).

For all integers i, j, we call the jth task of the ith job 7; ;. Each task defines
unambiguously exactly one machine that processes the task. For convenience,
we will use the notation 7; ; also for the number of the machine which processes
Tij- LThis way, o, . is the machine that processes the jth task in Job i. For the
processing time of tasks, we will use the shortened notation p; ; := p, ; for all 7, j.

The tasks have to be processed without preemption. Thus, while some task
;4 is processed, the corresponding machine o, ; is occupied by job J; for p; ;
consecutive time units and its processing may not be interleaved by another job.

The time to finish a job J; is determined by its dilation D = Z;’;l p; and the
waiting time caused by occupied machines.

Figure 1 shows an example of an input instance I of k-units-J,, with two jobs
where k = 3 and m = 6 holds.

We can assume that there are no schedules where all jobs are waiting simul-
taneously. Therefore, it is obvious that for every input instance the makespan of
any schedule is at least D and, by sequentially processing all jobs, at most D - d.

We use a geometrical representation of input instances that is based on [1]
and [3]. First, we restrict our description to input instances with only two jobs.
Afterwards we will formally define the representation of arbitrary instances.

Given an input instance of k-units-.J,,, with two jobs and dilation D, we employ
a D x D grid for the geometrical representation.

The axes of the grid represent the jobs. Each column represents one time-unit
of the first job J; and each column belongs to exactly one task. Thus, for every
j =1,2,...,m, task 71 ; corresponds to p; ; consecutive columns. Analogously,
job Js is represented in the rows of the grid, see Figure 2a.

Let 7 ; = 72,5, i.e., T1,; and T2 ;s have to be processed on the same machine.
Then the columns of 71 ; and the rows of 75 j intersect in the grid. The intersection
defines a compound of grid squares, i.e., 1 X 1-squares in the grid. We call such
a compound an obstacle. The term obstacle is motivated by the fact that each

192 TITLE WILL BE SET BY THE PUBLISHER

LIl [J2/ [s Jefs] o |

Ll [s e fafs] |2 |

L[[J2/ [s Jefs] o | |
| Lol] s] [fafs] (2 |
| L[[2/ [¢ Jafs] o |
L] [s e fafs] 2 | |

FIGURE 1. (a) An input instance for k-units-J,, with two jobs, 6

machines. (b) A valid schedule for (a). (¢) The minimum schedule
for (a).

point within an obstacle represents a conflict, because the corresponding machine
cannot process both jobs simultaneously. Note that each column and each row
contains exactly one obstacle.

We define a directed graph of the grid. The vertex set of the graph consists
of all vertices of the grid. The arcs are all orthogonal edges of the grid from the
left to the right and bottom-up that are not within an obstacle. Additionally, for
each grid square which is not within an obstacle, we add an arc from the lower
left to the upper right. A valid schedule is represented by a path in the graph
starting from the lower left vertex and ending in the upper right one. The goal is
to find a shortest path between those vertices. The instance of Figure 1 represented
geometrically is shown in Figure 2. Figure 2a shows the rows and columns defined
by the two jobs. The graph of the grid and the paths corresponding to Figures 1b
and lc are illustrated in Figures 2b and 2c respectively.

Note that in the geometrical representation, the processing of a machine may
pause. Obviously, the length of a schedule, where a job J waits while being
processed by some machine ¢ is equivalent to the length of a schedule where J
waits after being processed by ¢ and the delays of all other jobs are the same
as before (especially no job starts processing on o). Therefore, every path in
Graph(G4%,(I)) can be efficiently transformed into a valid schedule for 1.

Now we define formally the geometrical representation for an arbitrary number
of jobs. A d-dimensional instance I of k-units-J,, with dilation D is represented
as a d-dimensional D x D x ... x D grid G%/(I) that is a subgrid of an infinite
d-dimensional grid. Each axis of the grid is associated with one job of the instance.
For i = 1,2,...,d, the ith axis of G%(I) is labelled by (71,72, ..,Tim). As in

ON THE POWER OF RANDOMIZATION FOR JOB SHOP SCHEDULING 193

2
5
4
_
:’//7

3 i
1 L

—
(]
w

4 5

(=)

—~
&
~—
—~
=
~

(¢)

FIGURE 2. The geometrical representation of the schedules from Figure 1.

the two dimensional case, the processing time of each machine is represented by
its length on the axis and there are no gaps between the machines. Thus, the axes
define the advance of the jobs.

Consider a machine o;, j € {1,2,...,m}. The intersection of o, on two different
axes defines a p; x p; square in the grid, independent of the other axes and this
way D32 p? grid hypercubes are specified. All hypercubes specified by the (g)
combinations of axes form one obstacle for o; (see Fig. 3).

For every input instance I we assign the grid G%,(I) to the directed graph
Graph(G%,(I)) = (V,E), where V consists of all vertices of G%(I) (described
by their coordinates) and FE consists of all arcs (u,v) € V x V, where u :=
(u1,ug,...,uq) and v = (vy,vs,...,v4) such that u # v, v is not inside of an
obstacle, the arc (u,v) does not traverse an obstacle, and for [= 1,2, ..., d either
v = ug or v; = u; + 1. This way, every valid schedule for an input instance I of
k-units-J,, can be described as a path through Graph(G% (1)) (see Fig. 4).

194 TITLE WILL BE SET BY THE PUBLISHER

74

N

FIGURE 3. An example for a 2-obstacle in G.

FIGURE 4. An example for the geometrical representation of
a two dimensional instance G2 of k-units-J,. The arcs of
Graph(G3) are represented by gray lines. The thick line repre-
sents the schedule S(A(0,—2)). The dotted lines represent some
diagonals from D(r).

For an axis p we define the p-border as {(v1,vs,...,v4) € {1,2,...,D}¥ | v, =
D}. Further, let ¢ be the number of synchronized time-steps. With each time-step,
a schedule S advances one arc in the graph of the grid. Then S(t) € {1,2,..., D}¢
denotes the position in the grid reached by S after ¢ time-steps and |S| denotes
the length of S, i.e., the number of arcs traversed in the graph. Considering the

ON THE POWER OF RANDOMIZATION FOR JOB SHOP SCHEDULING 195

set of arcs in S up to position S(¢), then diag(t) denotes the number of diagonal
— and ort(t) the number of orthogonal steps at time ¢; a step is diagonal, if
all jobs advance simultaneously and it is orthogonal if exactly one job advances.
For an axis p, ort,(t) denotes the number of orthogonal steps on p at time ¢.
We denote the schedule computed by an algorithm A on input I by A(I). The
main-diagonal is the diagonal between the extreme corners of the grid.

In on-line problems, one only obtains part of the input and has to process it
immediately. After processing, one obtains a new part of the input. Now the
fundamental question is, how good an on-line algorithm can be compared to an
algorithm that knows the whole input. For this purpose, the competitive ratio
is used. Let A be an on-line algorithm for a minimization problem and I an input
for A. Further let costa(I) be the cost of the computed solution and Opt(I) the
cost of an optimal solution. Then the competitive ratio of A is defined as

comp 4 (1) := costa(I)/Opt 4(I).

A is d-competitive, if comp4 () < ¢ for every valid input I. For randomized on-
line algorithms, we need the expected competitive ratio Exp-Comp. Let Z; be a
random variable that measures the cost of the solution computed by a randomized
on-line algorithm A. Then

_ Elz/]
~ Opt(I)

Exp-Comp 4 (1)

Analogously, A is Exp[d]-competitive, if Exp-Comp 4 (I) < ¢ for every valid input I.

3. THE EFFECT OF LONG TASKS IN THE RANDOMIZED ON-LINE
ALGORITHM OLR,,

In this section, we will also consider schedules that do not start within the
grid. For an instance I, we employ an infinite grid containing G%,(I). The graph
of the infinite grid is defined in the same way as for the finite one. This way,
we can define schedules with initial delays by changing the start of the schedule
using negative numbers as coordinates in the grid. Obviously, these initial delays
cannot shorten the schedule. We consider start coordinates where exactly one
job starts immediately and all other jobs have an initial waiting time between
one and r time-units for an integer r. Let (v1,vs,...,v4) be a coordinate in the
grid such that v; = 0 for exactly one I € {1,2,...,d} and 0 > v, > —r, for all
be{1,2,...,d} — {l}. Then we define A(vy,va,...,vq) as a diagonal in the grid
starting at (vy,ve,...,vq) and ending at (vy + D+ a,v2 + D +a,...,vg+ D + a),
where a := ||(v1,v2,...,04)]|0c < 7. Then D(r) denotes the set of all diagonals
A(vy,va,...,vq) defined as above for a given r.

196 TITLE WILL BE SET BY THE PUBLISHER

BEach diagonal A € D(r) determines a schedule S as follows: Let (v1,vz,...,vq)
be the starting coordinate of A. Then for each [, job J; is postponed |v;| time units
with respect to the starting time. When the end of the diagonal is reached, all
jobs are finished because i; + a + D > D for all [. We modify OLR,,, of [3] to deal
with k-obstacles.

On-Line Algorithm 1 (k-OLR,,).

Input: The number of jobs d and the length of the axis D are known initially
and d = 0(\/5). The machines of the jobs are presented one by one for
each job in the order of their occurrences, and in arbitrary order across
the jobs.

Step 1: Choose uniformly at random a diagonal A from D(r), i.e., generate
the start coordinates of A at random.

Step 2: Apply the schedule S A by avoiding obstacles as they appear. Imme-
diately after avoiding an obstacle, the schedule returns to A. Let o be the
machine that forms the obstacle that has to be avoided. Then the obstacle
is avoided as follows:

Step 2.1: if there is a job that already occupies o, let this job finish the
processing on o;
Step 2.2: machine o processes the waiting jobs successively.

The area of a two dimensional k-obstacle corresponds to k% 1-obstacles. We
denote these obstacles as virtual 1-obstacles.

Lemma 1. Let I be an input instance for k-units-J,,with d = 2 jobs.

(i) In k-OLR,,,, the number of steps taken to avoid a k-obstacle crossed by
the diagonal A equals the number of steps used to avoid all of its virtual
1-obstacles that are crossed by A.

(ii) The number of virtual 1-obstacles in I is at most

|D/k]-k*+ (D mod k)?.

(iii) The average delay of k-OLR,(I) is at most

k+1 1
Y VD+ =
2 Jr2

Proof.

(i) Let (4,7) be the lower left corner of an k’-obstacle in G% (I) for some k" < k.
W.lo.g. assume that the schedule reaches some coordinate (,j’), where
j <j <j+k. Avoiding the obstacle obviously consumes 2- (5 + k" — j')
steps. Crossing the obstacle would consume j+ k' — j' diagonal steps. If we
assume a virtual 1-obstacle for each diagonal step, avoiding all 1-obstacles
one after the other consumes also 2 - (j + &' — j') steps (see Fig. 5).

(ii) We will show by contradiction that no instance can imply more virtual
obstacles than I. Let I’ be an input instance of k-units-.J,,, with d = 2 and
dilation D with the maximum number of virtual 1-obstacles larger than

ON THE POWER OF RANDOMIZATION FOR JOB SHOP SCHEDULING 197

|D/k|-k?+ (D mod k)?. We can assume w.l.o.g., that the machines are
ordered by their processing times such that p; < ps < ... < p,, holds. In
I’, the number of virtual 1-obstacles is ;" p?. If p» = k, i.e., there is
at most one j such that p; < k in I’, then we are obviously done, because
there are | D/k| machines with processing time k, at most one machine of
size D mod k.

Otherwise, p; = £ < k and py = ¢ < k. But then there is an instance
I" with p3,p4,...,pm asin I', py =& — 1, and po = & + 1. But thisis a
contradiction because &% + &2 < (€ — 1)2 + (&' +1)2.

(iii) We determine the average delay by generalizing the proof of [3]. For
simplicity we assume D = [? for some [. Let A; € {A(0,1), A(4,0)}.

Because of (i) we only have to consider 1-obstacles. At the border, the
schedule S A, lses i additional steps in order to finish both jobs. Observe
that the makespan of this schedule is exactly

D + i+ the number of 1-obstacles crossed by A;

because the length of A; is D — ¢ and the schedule uses 2 - i steps to
leave and to return to A;. Therefore, the delay of the schedule S A, 18
1 + the number of obstacles at A;. Now we have to determine the number
of delays. Let s = D mod kandt = (D—s)/k, i.e., there are t k-obstacles
and one s-obstacle. Then the number of virtual 1-obstacles is

t-k+s® < t-k*+s-k
= (k-t+s)-k
= D-k.

There are
VD

> i
i=—VD
delays to be considered for reaching the diagonals. Then we get

number of delays D-k+VD- (\/5 i 1)
diag(]S]) 2-vVD+1
< Pl

as an upper bound on the average delay. O

Now we are ready to turn towards instances with any number of jobs. We

count the number of possible delays. A label [on an axis in the grid G4 (I) of an

instance with d jobs determines p; d — 1-dimensional subgrids, each consisting of

D41 d-dimensional unit grid cubes. Two different axes labelled by ! determine
pl2 intersections of D?2 d-dimensional grid cubes each.

198 TITLE WILL BE SET BY THE PUBLISHER

FIGURE 5. The virtual path through the obstacle (the dotted
line) has exactly the same length as the path that avoids the
obstacle (the plain line).

Lemma 2. Let o; be the Ith machine in an instance of k-units-J,and r < D.
The intersection of every pair of p; (d — 1)-dimensional subgrids determined by o,
causes at most
m+p?«dfn.ﬂ4
2
delays over all of the d - =1 diagonals of D(r).

Proof. We generalize the proof of [3]. Every set of (d — 1)-dimensional subgrids
determined by machine o; intersects each of the diagonals of D(r) in exactly p;
grid cubes. We bound the number of diagonals intersecting the set of (d — 2)-
dimensional subgrids and count the number of 1-obstacles! crossed by these diag-
onals. Similar to [3] we use the relative delay between the bth job and the ath
job.

Let the ith position of the ath axis and the jth position on the bth axis be the
lower left corner C; of the p;-obstacle caused by machine o;.

All diagonals that reach C, have to cross p; 1-obstacles. The parallel diagonals
of distance &, where & < p;, have to cross p; — £ 1l-obstacles. The sum of all

1-obstacles crossed is
pi—1

 pi+p}
pz-i-;ﬁ—T'

We count the number of diagonals from D(r) with the relative delay j — i between
the bth and the ath job. Let D, (r) contain all diagonals with the nth value

1Using Lemma 1 it is sufficient to consider the 1-obstacles that are crossed by the diagonal.

ON THE POWER OF RANDOMIZATION FOR JOB SHOP SCHEDULING 199

of the starting coordinate equal to 0. Since D(r) is the union of all D,,(r) and
Dy(r) N Dy(r) = 0 for ¢ # ¢, where ¢,¢ € {1,2,...,d} holds, we count the
number of such diagonals in D,,(r) for each n separately.

Let n’ € {1,2,...,d} —{a,b}. The intersection of D,,(r) and C,, meets all the
diagonals A(cy, ¢, ..., ¢q), where ¢,y = 0 and ¢, = ¢4 + j —i. There are r possible
choices for every position from d—3 positions of {1,2,...,d}—{n, a,b}, and at most
r — (j —4) < r choices for the ath axis. The bth axis is unambiguously determined
by the position of a. Thus, we have at most 742 obstacles in the intersection of
C, and Dy(r) with t, = 0 and t, = i — j, where A(t1,ta,...,tq) € Dyp(r). The
number of such diagonals with two fixed coordinates is exactly r%~2. C, does not
intersect any diagonal from D, (r) because the diagonals A(sy, s2,...,8q) in Dy (r)
have s, > s, for every u € {1,2,....d}, i.e., the ath job (including the bth job).
Thus, C, intersects altogether at most

(d—1) .72

diagonals.
For each of these diagonals we have to consider at most (p; +p12) /2 delays. Thus,

pl+pl2 . (dil).rd—Q
2
bounds the number of delays from above. O

We employ Lemma 2 in order to bound the length of optimal schedules.

Theorem 1. For every positive integer D and every instance I of the problem
k-units-Jp, the length of any optimal schedule can be bounded from above by

makespan(I) < D + % -d-V/D.

Proof. Each schedule without delays is at most as long as the corresponding diag-
onal A(iy,ig,...,04).

We modify the proof of [3]. Since in every diagonal A(iy,is,...,iq) € D(r)
exactly one coordinate is zero, the number of diagonals in D(r) is exactly

d-rit, (1)

Note that one could consider also diagonals whose starting coordinates contain
several 0 elements, but this makes the calculation more complex and the achievable
gain is negligible.

As in the 2-dimensional case, we calculate the upper bound on the total delay
of all d - r? ! schedules. This bound can be obtained as the sum of an upper
bound on the number of the lengths of all diagonals and of an upper bound on the
number of all delays occurring on these diagonals.

Since the starting coordinates of all diagonals in D(r) lie on the boundary of
the grid and at the end at most r extra diagonal steps are added, the length of
each described diagonal is bounded from above by D + r.

200 TITLE WILL BE SET BY THE PUBLISHER

Because of (1), the sum of the lengths of all diagonals is at most
d-r? 1. (D +7r). (2)

Now we count the number of possible delays. If p jobs have to be processed on
one machine ¢ at the same time, we have to consider a delay for p — 1 of the jobs.
Note that the amount of time that one job already has consumed on ¢ reduces the
delay that we have to consider. Remember that a label o on an axis determines
a set of (d — 1)-dimensional subgrids of G4 (I). We calculate the total number of
delays as the sum of the number of delays caused by pairs of (d — 1)-dimensional
subgrids with the same label.

A label o on an axis determines a (d — 1)-dimensional subgrid of G4 (I). Be-
cause of Lemma 1 we get an upper bound on the number of virtual 1-obstacles by
assuming every obstacle to be a k-obstacle. Then there are at most D/k machines
and the number of schedule delays on all d - r?~! diagonals is at most

k+k2 (d\ 4, k41 (d\ .,
D/k-)) _p.rxr=.))
k= (2) : 2 \2) "

Therefore, the average number of delays per diagonal is at most

(D . % (;l) -rd_Q) J(d- i1,

D+ 2r 4 (Dd*(k + 1))/ (4r)

as a bound on the average makespan of all diagonal schedules. Choosing r =
dv/D /2 we get

‘We obtain

D+dVD- (k+3)/2. 0
With Theorem 1, the main result of this section is straightforward to obtain.

Corollary 1. k-OLR,, runs in linear time and its expected competitive ratio is at

most
k43

1+ 22—
vD

For d = o(~/D) and growing D, Exp-Compy-orr,, tends to one.

Proof. Let I be an input for k&-OLR,,,. Then for every schedule, makespan(I) > D
and following Theorem 1,

E[|k-OLR,,(I)|] < D + (k +3) - dV'D/2.

Therefore,
D+ (k+3)-d-VD/2 Ly (E+3)-d/2
D N VD

is an upper bound on the competitive ratio. O

ON THE POWER OF RANDOMIZATION FOR JOB SHOP SCHEDULING 201
4. RANDOMIZATION IS POWERFUL FOR ON-LINE k-units-J,,

In this section we compare the expected competitive ratio of k-OLR,,, with the
best competitive ratio achievable with deterministic on-line algorithms. It is com-
mon to treat on-line problems as games played by the algorithm designer against
an adversary that knows the on-line algorithm A and, if A is randomized, its
probability distribution. Given an on-line algorithm from the algorithm designer,
the adversary creates an input instance. Since on-line algorithms compute partial
solutions in order to get more input, the input is revealed piece by piece. Thus, in
k-units-J,,, the adversary chooses the set of tasks and their order within the jobs.

Let o; be the jth machine. Then we call a task processed on o; a pj-task.
We call an obstacle determined by pj-tasks a pj-obstacle. For simplicity we
assume that k is not larger than D. Directly under an obstacle only orthogonal
horizontal steps are possible. Based on that, we design the following adversary.
The horizontal axis is denoted by p, and the vertical by p,.

Adversary 1 (on-line k-units-J,,, d = 2).

Input : An on-line algorithm A for k-units-J,, and the lengths of the tasks.

Step 1: If k > D/2 then place a task of length k on (0,0) and jump to 7.
else place a task T of length k on p, and place a 1-task on py. T := 7.

Step 2: As long as A takes orthogonal vertical steps and the next task is not
specified, place new I1-task on p,. If the distance to the border is exactly
the length of T, place task T to the next position instead and jump to 7.

Step 3: As soon as A takes a orthogonal horizontal or a diagonal step, place
T on the next free position of the y axis.
Step 4: Let k' be the length of T. Until A has advanced k' — 1 steps on py
or has reached the border fill up every unspecified position with 1-tasks.
Step 5: If both borders have a distance of at least k, place a k-task on the
next position of p,, T := this machine and jump to Step 2.

Step 6: Place a task of mazimum length on the last possible position of p,
and set T := this machine. Do steps 2 and 3.

Step 7: Place 1-tasks at all remaining positions.

In Figure 6, an example of a constructed instance with a corresponding schedule
illustrates how the adversary acts.

Lemma 3. Let A be a deterministic on-line algorithm for k-units-J,, and let I
be an input for A constructed by Adversary 1. Furthermore, let S be the schedule
computed by A with S(t) = (i,7) being the schedule at time t. If i =n-(2k — 1)
holds for n € N, then

ort,(t) >n-(k—1).

Proof. We distinguish the cases ort,(|S]) = 0 and ort,(|S]) > 0.
(i) Let orty(]S]) = 0. Then every step advances on p,. We show by induction

that 7 < n -k holds. We have to consider all n € N — {0} such that
n-(k—1)<D.

202

TITLE WILL BE SET BY THE PUBLISHER

1

1

1

|

=
7/

o = = -

FIGURE 6. A possible schedule constructed by Adversary 1.

Because of the k-obstacle at (0,1), we have S(k) = (k,0) or S(k) =
(k,1). The k — 1 steps after the obstacle can be taken diagonally. Thus,

S(2k —1) = (¢/,2k — 1)
with ¢/ < 14 (k — 1) = k. The next task on p, is of size k. Now let
S((n—1)-(2k—1)) = (4,4) and j < (n—1)-k. Then the adversary requires

k-tasks for both jobs such that there is a k-obstacle on (i,(n —1) -k +1).
While the vertical way is obstructed by this obstacle, we have

S(t) € {(t,
fort<(n—1)-(2k—1)+k and
{3 15" <n-k}

- 1)

N1 <(m-1)-k+1}

S(t') €

) €
fort! <t+k—1=n-(2k
This implies directly

orty, >n-(k—1).

Let ort,(|S]) > 0. Obviously, orthogonal vertical steps reaching posi-
tions below valid schedules of (i) cannot reduce the number of orthogonal
horizontal steps. Steps on p, between two k-tasks are not counted in (i).
Thus, the only positions to be considered are those that are directly before
k-machines on p, above all previous obstacles on p,.

ON THE POWER OF RANDOMIZATION FOR JOB SHOP SCHEDULING 203

For n =0, ort,(t) > n- (k—1) is trivially fulfilled. Now let S(¢) = (¢,7) such that
i =mn-(2k —1) and j is above all previous obstacles, and let S(t') = (¢’, ') such
that ¢/ = (n+ 1) - (2k — 1). There must be an [such that

St+1)e{(i+1,j+1),i+1—1,5+1)}

Ifi+1<D-—kori+ 1> D, the following k — 1 steps are orthogonal horizontal.
Otherwise, '—1 = 2k—1 and j'—j < k which implies that at least k—1 orthogonal
horizontal steps are required to reach (¢, j'). Thus,

orty(t') >n+1-(k—1). a

The number of orthogonal horizontal steps from Lemma 3 is crucial for the fol-
lowing theorem.

Theorem 2. For every deterministic on-line algorithm A for k-units-J,,, Adver-
sary 1 constructs an input instance I with two jobs such that

D (k=1)+1

>
A(Ia)| = D+ =5—

Proof. Let n := |D/(2k—1)] and [:= D mod (2k — 1). We analyze the maxi-
mum number of diagonal steps. Following Lemma 3, ort, (D) is at least n- (k—1).
At time ¢t = n - (2k — 1), the ratio ort,(t)/(ort, (t) + diag(t)) is at least

n-(k—1) k-1
n-(k—1)+m-2k—1)—n-(k—1)) 2k—1

Let S := A(I4). All steps on p, must sum up to D. Let s be the time such that
S(s) = (D, j) for some j. Then diag(s) + ort;(s) = D. Thus,

k—1

ort;(|S]) > orty(s) > D - 5n 1 1
and
k-1 k-1 D(k—1)+1
>92.D. — — . — = ot A
S1=2-D- 2— 1+<D (D o 1)) D+ = — O

On the other hand, we use the following simple deterministic on-line algorithm in
order to bound the makespan from above:

On-Line Algorithm 2 (Greedy).

Input: An input instance I of k-units-Jp, with d =2 jobs.
Rule 1: Whenever possible take diagonal steps.
Rule 2: Prefer orthogonal horizontal step to orthogonal vertical steps.

204 TITLE WILL BE SET BY THE PUBLISHER

Lemma 4. Let Greedy run on an input instance I with d = 2.

(i) Greedy runs in linear time.
(ii) At least (D — k)/2 diagonal steps are taken.

Before we can prove Lemma 4, we first need the following lemma.

Lemma 5. Let (i,7) be the lower left corner of a k'-obstacle, 1 < k' < k. Then
fromv="(>i,j+Fk) andw = (i+k,j) either k' diagonal steps are possible or the
border is reachable with fewer than k' steps.

Proof. W.l.o.g. we only consider v. The proof for w is analogous. If D — max{i+
k',j} <K', then the border is reachable in k&’ orthogonal steps because the tasks
of the jobs cannot overlap and thus no obstacle can be in the way.

Let D — max{i+ k’,j} > k' and assume that from v, only | diagonal steps can
be taken, where 0 <! < k’. Then there must be an obstacle at (i + k" + 1,5 + 1).
But this would imply two overlapping tasks for one job which is a contradiction
(see Fig. 7). O

Proof of Lemma 4.

(i) The size of the input is D - d. In order to determine a diagonal, d -
[log, (dv/D/2)] random bits are sufficient. Therefore, the first step runs
in linear time. The time to execute Step 2 is not longer than the schedule
itself which cannot be longer than d - n steps.

(ii) Let S be the schedule calculated by Greedy and let f : N — Q be the
function that maps time ¢ > 1 to diag(t)/(ort(t)+diag(t)) and f(0) := 1/2.

Let, for an integer n, v(n) be the minimum value of ¢ such that |{t’ < |
f(#") > 1/2}| = n holds. We show by induction on n that, if the distance to
the border is b > 2k, then there is an s with v(n) < s < v(n)+2k such that
f(s) > 1/2. If there is no obstacle at (0,0), Greedy starts with a diagonal
step. Then f(1) = 1 > 1/2. Otherwise, a k’-obstacle, where k' < k,
is located at (0,0). Thus, Greedy takes k' horizontal steps. Following
Lemma 5, the succeeding k' steps are diagonal. Therefore, (2k' k') is
reached within 2" steps and f(2k") = k'/(K' + k') = 1/2.

Let (i,7) = S(v(n)). If a diagonal step is possible, then

flv(n+1)) = (diag(v(n))+1)/(ort(v(n)) + diag(v(n)) + 1)
=2 flv(n)) 2 1/2.
Otherwise, a k”-obstacle, where k" < k, is located at (i — ¢, j) or (i,j —c)

for 0 < ¢ < k”. Then from (i,7), the following k” — ¢ steps must be
orthogonal and afterwards k” diagonal steps are possible. Altogether, we

get
fwn+1)) = (diag(v(n)) + ")/ (diag(v(n)) + k" + ort(v(n)) + k" — ¢)
> (diag(v(n)) + ")/ (2K" + diag(v(n)) + ort(v(n)))
> (diag(v(n)) +£")/(2 - (diag(nu(n)) + k"))
> 1/2.

ON THE POWER OF RANDOMIZATION FOR JOB SHOP SCHEDULING 205

J j+k D
; D

p_ e

FIGURE 7. As shown in Lemma 5, after a k-obstacle either k
diagonal steps are possible (the lower schedule) or a border is
reached somewhere (the upper schedule).

Thus, there is an r < 2k such that after the first D — r steps f(r) > 1/2
holds. Thus, at least (D — 2k)/2 of the first D — r steps are diagonal. If
r < k, we are done.

Otherwise, a simple induction on r (left to the reader) shows that the
number of diagonal steps in the remaining schedule suffices. O

With the number of diagonal steps from Lemma 4 we can easily prove the following
theorem.

Theorem 3. For any input I with d = 2, |Greedy(I)| is bounded from above by

8D,

2+2

Proof. Let S :=Greedy(I). From every coordinate (i,), (D, D) is reachable within
(D — i)+ (D — j) orthogonal steps. We know from Lemma 4 that diag(|S|) >
(D —k)/2, and thus

ort(IS]) <2 (D — (D - k)/2).
Altogether,

206 TITLE WILL BE SET BY THE PUBLISHER

Lemma 6. Let A be a deterministic algorithm for on-line k-units-J,,. There is
an input instance I with d = 3 such that A results in a makespan of at least

2D 1
D+ (1-—).
+3(2k1)

Proof. For a given algorithm the adversary constructs the following instance. Let
Pzs Py, and p, be the three axes in I.

Rule 1: Place all k-tasks as Adversary 1; p, is treated independently like p,.
Rule 2: Place the 1-tasks on p, and on p. such that every second step one
of the jobs has to wait (see [4]).

The 1-tasks are either placed on both, p, and p. or in increasing order. This
ensures that each time the tasks are available for both axes.

In order to bound the length of the schedule from below, we consider p, and
the p, separately; then I, and I, are formed by the p, and either p, or p, of I
respectively.

For simplicity we assume that (2k — 1) divides D. Let S := A(I) with S,
and S, denoting the schedules corresponding to I, and I, respectively. Further
let n := D/(2k — 1), where n is an integer and ¢ the time when S reaches the
pz-border. Following Lemma 3, for S, and for S,, orty(t) > n- (k — 1) and thus
diag(t) < n-k.

For simplicity, let ort, refer to Sy and ort, to 5.

Orthogonal steps on p, or p. cause delays on p,. At most every second step
of ort,(t) and ort,(¢) can be done simultaneously on both axes. Thus, we have to
consider at least

4 orty(|S]) + ort.(|5])
3 2
delays on p,. Thus, we get
4-n- (k-1
S| > D+ %

2D 1

=D+=.(1- . O

T3 < 2% — 1>

For d = 3 dimensions, we combine results from [4] and Adversary 1. We exploit
the fact that Adversary 1 can place the 1-obstacles arbitrarily.

Theorem 4. There is no deterministic on-line algorithm for k-units-J,, with a
competitive ratio better than 5/3.

Proof. Let A be a deterministic on-line algorithm for k-units-J,,. Lemma 6 implies
that for A there is a hard instance I such that the resulting schedule is longer than

ON THE POWER OF RANDOMIZATION FOR JOB SHOP SCHEDULING 207

where 0 < ¢ < 2/(6k — 3). On the other hand, Corollary 1 implies that the

minimal makespan for I tends to D with growing D. Thus, A is not (% — 5)—

competitive. O

5. CONCLUSIONS

Based on the algorithm OLR,,, from [3] we presented the randomized algorithm
k-OLR,, that tends to be 1-competitive for a large D. For on-line k-units-.J,, with
two and three jobs we presented new upper and lower bounds on the makespan and
we proved the nonexistence of deterministic on-line algorithms for k-units-.J,, that
are better than 5/3-competitive. Thus, randomization improves the competitive
ratio significantly.

Acknowledgements. The author would like to thank Juraj Hromkovi¢ for helpful discus-
sions and the referees for their comments and suggestions.

REFERENCES

[1] P. Brucker, An efficient algorithm for the job shop problem with two jobs. Computing 40
(1988) 353-359.

[2] U. Feige and C. Scheideler, Improved bounds for acyclic job shop scheduling. Combinatorica
22 (2002) 361-399.

[3] J. Hromkovi¢, K. Steinhofel and P. Widmayer, Job shop scheduling with unit length tasks:
bounds and algorithms. ICTCS ’01: Proceedings of the 7th Italian Conference on Theoretical
Computer Science. Lect. Notes Comput. Sci. 2202 (2001) 90-106.

[4] J. Hromkovi¢, T. Momke, K. Steinhofel and P. Widmayer, Job shop scheduling with unit
length tasks: bounds and algorithms. Algorithmic Operations Research 2 (2007) 1-14.

[5] F.A. Leighton, B.M. Maggs and S.B. Rao, Packet routing and job shop scheduling in
O(congestion + dilition) steps. Combinatorica 14 (1994) 167-186.

[6] F.A. Leighton, B.M. Maggs and A.W. Richa, Fast algorithms for finding O(congestion +
dilation) packet routing schedules. Combinatorica 19 (1999) 375-401.

[7] J.K. Lenstra and A.H.G. Rinnooy Kan, Computational complexity of discrete optimization
problems. Annals of Discrete Mathematics 4 (1979) 121-140.

[8] D.P. Willamson, L.A. Hall, C.A.J. Hurkens, J.K. Lenstra, S.V. Sevast’janov and D.B. Shmoys,
Short shop schedules. Operations Research 45 (1997) 288-294.

Communicated by J. Hromkovic.
Received August 28, 2007. Accepted April 24, 2008.

	Introduction
	Preliminaries
	The effect of long tasks in the randomized on-line algorithm OLRm
	Randomization is powerful for on-line k-units-Jm
	Conclusions
	References

