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HIERARCHIES AND REDUCIBILITIES ON REGULAR
LANGUAGES RELATED TO MODULO COUNTING ∗

Victor L. Selivanov1

Abstract. We discuss some known and introduce some new hierar-
chies and reducibilities on regular languages, with the emphasis on the
quantifier-alternation and difference hierarchies of the quasi-aperiodic
languages. The non-collapse of these hierarchies and decidability of
some levels are established. Complete sets in the levels of the hier-
archies under the polylogtime and some quantifier-free reducibilities
are found. Some facts about the corresponding degree structures are
established. As an application, we characterize the regular languages
whose balanced leaf-language classes are contained in the polynomial
hierarchy. For any discussed reducibility we try to give motivations
and open questions, in a hope to convince the reader that the study
of these reducibilities is interesting for automata theory and computa-
tional complexity.
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1. Introduction

The notion of hierarchy appeared in descriptive set theory as a classification tool
for characterizing complexity of sets studied in analysis. The notion of reducibility
appeared in computability theory and plays a central role in the classification of
undecidable problems.
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Later, different notions of hierarchies and reducibilities were employed in differ-
ent branches of computation theory and of definability theory (examples in descrip-
tive set theory are the Borel hierarchy and the Wadge reducibility, in complexity
theory – the polynomial-time hierarchy and the polynomial-time m-reducibility,
in finite model theory – the logical hierarchies and reducibilities and so on). Some
of these hierarchies and reducibilities turned out to be also quite important for the
corresponding fields.

Hierarchies in automata theory (e.g. the dot-depth hierarchy) were introduced
long ago [7]. More recently, people began to consider reducibilities inducing non-
trivial degree structures on the regular sets (i.e., on the languages recognized by
finite automata) [3,12,13,38,39,43]. In particular, there exists a natural quantifier-
free reducibility that fits the dot-depth hierarchy in the sense that every level is
downward closed and has a complete set under this reducibility.

In this paper, we continue to discuss some known and introduce some new hier-
archies and reducibilities on the regular sets, with the emphasis on the quantifier-
alternation and difference hierarchies of the quasi-aperiodic languages (axioma-
tized by sentences of signatures containing predicates that count positions modulo
a given number). The non-collapse of these hierarchies and decidability of some
levels are established. Complete sets in the levels of the hierarchies under the
polylogtime and quantifier-free reducibilities are found. Several facts on the cor-
responding degree structures are established. As an application, we characterize
the regular languages whose leaf-language classes (in the balanced model of leaf
language definability) are contained (uniformly on oracles) in the polynomial hi-
erarchy.

This paper is closely related to [12–14,26,27,35,38,39], and we often refer to the
results and proofs there. Reading of our paper would become much easier with
these sources at hand.

In Section 2 we recall some notions and known facts and state some new facts
related to the logical approach to automata theory. In Section 3 we consider hi-
erarchies of regular languages induced by the quantifier-alternation hierarchies of
first-order formulas. Sections 4–7 are devoted to the difference hierarchies over
levels of the quantifier-alternation hierarchies. In Section 8 we discuss the impor-
tant polylogtime reducibility closely related to the so called leaf language approach
to complexity classes which is described rather comprehensively in [45]. In Sec-
tions 9 and 10 we consider some versions of the quantifier-free reducibility [38,39]
which fit the introduced hierarchies. In Section 11 we present some results on the
first-order reducibilities. We conclude in Section 12 with mentioning some other
reducibilities and open questions.

2. Regular languages and logic

We use (mostly without definitions here) some standard terminology and nota-
tion from computability theory, automata theory and complexity theory, say the
terminology on reducibilities and degrees, the notation of languages by regular
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expressions or the concept of polynomial-time non-deterministic Turing machine.
Letters A,B will denote alphabets which are always assumed to contain at least
two symbols. By A+ we denote the set of all non-empty words over A, and by
A∗ the set of all words (including the empty word ε). For any k, let Ak denote
the set of words over A of length k; notations A≤k and A>k are defined in the
same manner. Since usually we work with a fixed alphabet A, we normally do not
mention the alphabet explicitly. The length of a word w is denoted |w|. For every
i < |w|, w(i) denotes the ith letter of w (thus, we start the numbering of letters
in w with 0). By #a(w) we denote the number of entries of the letter a in the
word w.

Since we use the logical approach to regular languages [4,20,40,42] and the
empty structures are not usual in logic, we work mostly with the languages of non-
empty words L ⊆ A+. Correspondingly, the complement L of such a language L is
defined by L = A+ \L. As usual, P (A+) denotes the power set of A+. By P ′(A+)
we denote the class of all non-trivial (i.e. distinct from ∅ and A+) languages over
A. By R (R′) we denote the class of all regular (respectively, regular non-trivial)
languages over A. For a class C of languages, let BC(C) be the Boolean closure of
C, i.e., the closure of C under union and complement. By co-C we denote the class
of complements of languages in C.

Relate to any alphabet A = {a, . . .} the signature σ = σA = {≤, Qa, . . . ,⊥,
�, p, s} where ≤ is a binary relation symbol, Qa (for each a ∈ A) is a unary relation
symbol, ⊥ and � are constant symbols, and p, s are unary function symbols.
A word u = u0 . . . un ∈ A+ may be considered as a structure u = ({0, . . . , n};≤
, Qa, . . .) of signature σ, where ≤ has its usual meaning, Qa(a ∈ A) are unary
predicates on {0, . . . , n} defined by Qa(i) ↔ ui = a, the symbols ⊥ and � denote
respectively the least and the greatest elements, while p and s are respectively the
predecessor and successor functions on {0, . . . , n} satisfying p(0) = 0 and s(n) = n.
For a sentence φ of σ, let Lφ = {u ∈ A+ | u |= φ}. Sentences φ, ψ are treated as
equivalent when Lφ = Lψ. In [20] it was shown that the class of FOσ-axiomatizable
languages (i.e., languages of the form Lφ, where φ ranges through the first-order
sentences of σ), coincides with the class of regular aperiodic languages (known also
as star-free languages).

Remark. We use in this paper the term “axiomatizable” to denote the languages
of the form Lφ instead of the more popular in the literature on automata theory
term “definable” because our term corresponds better to the old tradition in logic.
Note that the term “finitely axiomatizable” would be even more appropriate but
we can use the abbreviated form safely because consider only finitely axiomatizable
languages.

We will consider also some subsignatures and enrichments of the signature σ.
In particular, let ρ = {<,Qa, . . .}, and for any positive integer d let τd be the
signature σ∪{P 0

d , . . . , P
d−1
d }, where P rd is the unary predicate true on the positions

of a word which are equivalent to r modulo d. By FOτd
-axiomatizable language we

mean any language of the form Lφ, where φ is a first-order sentence of signature τd.
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Note that signature τ1 is essentially the same as σ because P 0
1 is the valid predi-

cate. In contrast, for d > 1 FOτd
-axiomatizable languages need not be aperiodic.

E.g., the sentence P 1
2 (�) defines the language L consisting of all words of even

length which is known to be non-aperiodic. It is easy to see that the predicates
P 1
d , . . . , P

d−1
d may be eliminated from the formulas of signature τd (e.g. P 1

d (x) is
essentially equivalent to P 0

d (s(x))). Nevertheless, for technical reasons we will not
remove them from τd. We are also interested in the infinite signature τ =

⋃
d τd.

Note that the signatures ρd = ρ ∪ {P 0
d , . . . , P

d−1
d } and ρP =

⋃{ρd | d ∈ P}, for
each set P of positive integers, were discussed in [5,10,35].

Let us formulate a precise characterization of the introduced classes of languages
in terms of syntactic monoids and homomorphisms (for details see e.g. Chap. 5
of [35]). For a language L, let M(L) be its syntactic monoid and ηL : A∗ →M(L)
the canonical syntactic homomorphism. We denote the semigroup operation on
M(L) by · . As is well-known, L is regular iff M(L) is finite. A language L is called
aperiodic if there is no non-trivial group (G; ·) ⊆ (M(L); ·) (as usual, ⊆ here means
the substructure relation). A language L is called quasi-aperiodic [35] if there is
no non-trivial group (G; ·) ⊆ (ηL(Ad); ·) for each d > 0 where ηL(Ad) is the image
of Ad under ηL. We call a language L d-quasi-aperiodic (for any fixed d > 0), if
there is no non-trivial group (G; ·) ⊆ (ηL((Ad)+); ·). Note that L is aperiodic iff L
is 1-quasi-aperiodic.

Theorem 2.1.
(1) A regular language L is quasi-aperiodic iff it is FOτ -axiomatizable.
(2) A regular language L is d-quasi-aperiodic iff it is FOτd

-axiomatizable.
(3) A regular language L is aperiodic iff it is FOσ-axiomatizable.

For the proof of (1) see Theorem VI.4.1 in [35]. The proof of (2) is implicitly
contained in the proof of that Theorem VI.4.1. For a detailed proof of (2) (even
for an arbitrary set P of moduli) see [10]. The assertion (3) is a particular case
of (2) and is a classical result of Schützenberger, McNaughton and Papert [20,25].

The last theorem implies the following important decidability result (for details
see e.g. [10,35]).

Corollary 2.2. The classes of languages from the last theorem are decidable.

Remark. In [10] several additional interesting facts about the first-order axiom-
atizable languages were established, in particular FOτa∪τb

= FOτc where c is the
least common multiple of a and b, and FOτa ∩FOτb

= FOτd
where d is the greatest

common divisor of a and b.
From the interpretation of signature symbols in the word structures u it follows

that the nonempty words correspond bijectively to (the isomorphism types of) the
finite models of the theory CLOτd

A of signature τd (CLO stand for “colored linear
orders”) with the following axioms:

– ≤ is a linear order,
– any element satisfies exactly one of the predicates Qa(a ∈ A),
– ∀x(⊥ ≤ x ≤ �),
– ∀x(p(x) ≤ x ∧ ¬∃y(p(x) < y < x)),
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– ∀x(x ≤ s(x) ∧ ¬∃y(x < y < s(x))),
– ∀x(x > ⊥ → p(x) < x),
– ∀x(x < � → x < s(x)),
– P 0

d (⊥),
– any element satisfies exactly one of the predicates P 0

d , . . . , P
d−1
d ,

– ∀x < �(P rd (x) → P r+1
d (s(x))) for 0 ≤ r < d− 1,

– ∀x < �(P r−1
d (x) → P 0

d (s(x))).

Sometimes it is technically more convenient to consider “relational” versions of the
signature τd (and of the theory CLOτd). E.g., one could take the signature τ ′d =
{≤, Qa, . . . , P rd ,⊥,�, S}, where S(x, y) is a binary relation symbol interpreted as
“x is an immediate predecessor of y”. The signatures τd and τ ′d are equivalent
for most of our purposes, in particular the quantifier alternation hierarchies over
them (discussed in the next section) coincide. So we may use any of the signatures
when appropriate.

Remark. Analogs of many results of this paper hold (with similar proofs) also
for some signatures not discussed explicitly in what follows, in particular for the
signatures ρd mentioned above. We present all details for the signatures τd and τ
because they are better related to the leaf language definability.

For any set P of positive integers, let FO + MOD(P) denote the class of lan-
guages axiomatized by σ-sentences using modulo counting quantifiers ∃(q,r) with
moduli q in P , along with the usual first-order quantifiers. It is known (see [37]
or Chap. 7 of [35]) that the class FO + MOD = FO + MOD({1, 2, . . .}) consists
exactly of languages with solvable syntactic monoid. Any FOτd

-axiomatizable
language is FO + MOD({d})-axiomatizable. The language L ⊆ {a, b}+ consisting
of the words with even number of entries of a is FO + MOD({2})-axiomatizable
but not quasi-aperiodic. More information on the logical approach may be found
in [11,23,26,35,40,41].

3. Quantifier-alternation hierarchies

In this section we consider hierarchies of regular languages induced by the
quantifier-alternation hierarchy of first-order formulas in prenex normal form. For
any signature θ we obtain the corresponding hierarchy called θ-hierarchy.

For n > 0, let Σσn be the class of all languages Lφ, where φ ranges through the
Σn-sentences of σ. Let Πσ

n = co-Σσn and Δσ
n = Σσn ∩ Πσ

n. In [40] it was shown
that the σ-hierarchy (more exactly, the sequence {BC(Σσn)}n>0) coincides with
the dot-depth hierarchy which is a popular object of automata theory. If we take
the smaller signature ρ = {<,Qa, . . .}, we obtain the ρ-hierarchy {Σρn} known as
the Straubing-Thérien hierarchy. The mentioned hierarchies of regular languages
have natural characterizations in terms of regular expressions [23,40]; we do not
recall these characterizations because we work here only with the logical definition.

Levels of the τd-hierarchy are denoted Στdn ,Π
τd
n ,Δ

τd
n . Of course, the τd-hierarchy

exhausts the class of τd-axiomatizable languages, and the τ1-hierarchy coincides
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with the σ-hierarchy. To our knowledge, the τd-hierarchy for d > 1 (as well as the
τ -hierarchy discussed below) was not considered in the literature so far.

One could also consider similar hierarchies of languages for signatures like
τd1 ∪ · · · ∪ τdk

, but in fact we do not obtain new hierarchies in this way. The
next result refines a related fact in [10] mentioned in the previous section.

Proposition 3.1. For all n, c, e > 0 there holds Στc∪τe
n = Στdn , where d is the least

common multiple of c and e.

Proof. For the inclusion from left to right, we have to show that the predicates
P 0
c and P 0

e are easily (say, by the quantifier-free formulas) expressible through the
predicates P rd . Indeed, let d = ck. Then P 0

c (x) is equivalent to P 0
d (x) ∨ · · · ∨

P k−1
d (x), and similarly for e.
For the converse inclusion, let a be the greatest common divisor of c, e. Then

d = c′e, where c′ = c/a. Since, by the previous paragraph, P 0
c′ is easily expressible

through P 0
c , it suffices to express P 0

d through P 0
c′ and P 0

e . Since c′ and e have no
common divisors, it holds P 0

d (x) ↔ P 0
c′(x) ∧ P 0

e (x). �

By Στn,Πτ
n,Δτ

n we denote the levels of the τ -hierarchy. From the last proposition
we immediately obtain the following relation between the introduced hierarchies.

Corollary 3.2. For any n > 0 there hold Στn =
⋃
d Στdn , Πτ

n =
⋃
d Πτd

n and
Δτ
n =

⋃
d Δτd

n .

Obviously, any Σ-level of the quantifier-alternation hierarchies is closed under
union and intersection and contains ∅ and L+ as elements, while any Δ-level is
closed under union, intersection and complement.

The main result about the quantifier-alternation hierarchies is that they do
not collapse. This can be checked by the standard method of Ehrenfeucht-Fräıssé
games developed in [32,33,40,41] for the ρ- and σ-hierarchies and the corresponding
difference hierarchies. Those proofs are generalized to the hierarchies of this section
in a straightforward way. Following the referees request, we provide some details
of the proof.

Theorem 3.3. For any n > 0 there holds Σρn �⊆ Πτ
n. In particular, Στn �⊆ Πτ

n and
Στdn �⊆ Πτd

n for all n, d > 0.

We start with introducing some notions and establishing some lemmas. Let
ν be a finite set of variables. Recall that dealing with the Ehrenfeucht-Fräıssé
games is more comfortable for the signatures without function symbols, like the
signatures ρ and τ ′d from the previous section.

As we already noted, Στdk = Στ
′
d

k for all d, k ≥ 1. In this section we work with
formulas and structures of the signature τ ′d.

By ν-structure we mean a word from A+ (interpreted as a structure of signa-
ture τ ′d) together with an assignment of values to the variables from ν. Note [23,35]
that the ν-structures may be considered as nonempty words (a0, U0) · · · (an, Un)
over the bigger alphabet A× P (ν) where Ui is the set of variables assigned to the
position i of the “usual” word a0 · · · an; the sets U0, . . . , Ur are pairwise disjoint
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and exhaust P (ν). Formulas of signature τ ′d with free variables in ν are inter-
preted in the ν-structures in the usual way. The ∅-structures are identified with
the nonempty words over A. Since the modulo d is fixed till the proof of Theorem
3.3, we do not mention it explicitly in the technical notions like Sk,r or �k,r we
are going to introduce (the exact notation would be Sdk,r or �d

k,r, respectively).
Define for any k ≥ 0 and r ≥ 1 the set Sk,r of formulas of signature τ ′d by induc-

tion on k as follows. Let S0,r be the set of quantifier-free formulas in disjunctive
normal form without repetitions of the elementary conjunctions and without rep-
etitions of members of the elementary conjunctions. For k > 0, let Sk,r be the set
of finite disjunctions of pairwise distinct formulas ∃zk1∃zk2 . . . ∃zkp¬φ where p ≤ r
and φ ∈ Sk−1,r. Thus, all bounded variables of the formulas in Sk,r are among
the variables zi1, z

i
2, . . . z

i
r, i ∈ {1, . . . , k} fixed in advance. The next assertion is

obvious.

Lemma 3.4.
(1) Let ν be a finite set of variables, k ≥ 0 and r ≥ 1. Then the set of sentences

in Sk,r with free variables among ν is finite.
(2) For any k ≥ 1, the class of languages axiomatized by the sentences from⋃

r Sk,r coincides with Στdk .

For all ν, k ≥ 0 and r ≥ 1, define a preorder �k,r on the ν-structures as follows:
u �k,r v iff u |= φ implies v |= φ, for all formulas φ ∈ Sk,r with free variables
among ν. As usual, let ≡k,r denote the associated equivalence relation. By the
previous lemma, the relation ≡k,r is of finite index. By upper set of a preorder we
mean a set of elements closed upwards under the preorder relation.

Lemma 3.5. For all L ⊆ A+ and k ≥ 1, L ∈ Στdk iff L is an upper set in
(A+; �k,r) for some r ≥ 1.

Proof. Let L ∈ Στdk , then L = Lφ for some Σk-sentence φ of signature τ ′d. By
Lemma 3.4, φ is equivalent to a sentence from Sk,r for some r. Then L is an
upper set in (A+; �k,r). Conversely, let L be an upper set in (A+; �k,r). Since
L is a finite union of upper “cones” ǔ = {v | u �k,r v} in (A+; �k,r), it suffices
to show that any such a cone ǔ is in Στdk . Clearly, ǔ = Lφ ∈ Στdk where φ is∧{ψ ∈ Sk,r | u |= ψ}. �

Next we characterize the introduced preorder in terms of a k-round Ehrenfeucht-
Fräıssé game Gk,r(u, v) defined for any given ν-structures u and v as follows.
There are two players denoted 1 and 2. The player 1 wants to show that the
structures are distinct while the player 2 wants to show they are similar. Each
player has his/her copies of the kr variables zj1, . . . , z

j
r , j = 1, . . . , k (realized e.g.

as kr pebbles labeled by the variables). For k = 0, the players make no moves
at all and simply determine the winner by the following rule: the player 2 wins
iff u ≡0,r v. Now let k ≥ 1. At the first round, player 1 chooses a number p ≤ r
and puts his/her pebbles zk1 , . . . , zkp at some positions of the ν-structure u, forming
thus a {y1, . . . , ym, zk1 , . . . , zkp}-structure u′, where ν = {y1, . . . , ym}. The player 2
answers by putting his/her variables zk1 , . . . , z

k
p at some positions of v forming a
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{y1, . . . , ym, zk1 , . . . , zkp}-structure v′. If k = 1, the game is over and the winner
is determined by the rule above for u′ and v′. Otherwise, the players continue as
in the game Gk−1,r(v′, u′). The notion of a winning strategy for each player is
defined in the obvious way. Since the game Gk,r(u, v) is finite, one of the players
has a winning strategy.

Lemma 3.6. Let u and v be ν-structures and let k � 0, r � 1. Then u �k,r v iff
player 2 has a winning strategy in Gk,r(u, v).

Proof. Let u ≤k,r v. We check by induction on k that player 2 has a winning
strategy in Gk,r(u, v). For k = 0 this is clear because u and v satisfy the same
quantifier-free formulas. Let k > 0. Towards a contradiction, suppose that player 2
does not have a winning strategy, hence player 1 has a winning strategy. Assign
the values to zk1 , . . . , z

k
p (p ≤ r) in u according to the first move of player 1 by this

strategy. Then we obtain a structure u′ such that for all values of zk1 , . . . , zkp (p ≤ r)
in v (resulting in a structure v′) player 1 has a winning strategy in Gk−1,r(v′, u′).
By induction hypothesis, v′ �≤k−1,r u

′. Let φ be the disjunction of all formulas
from Sk−1,r that are false in u′. Then v′ �|= ¬φ. Since the values of zk1 , . . . , z

k
p in v

were arbitrary,
v �|= ∃zk1 , . . . , zkp¬φ and u |= ∃zk1 , . . . , zkp¬φ,

which is a contradiction because the formula ∃zk1 , . . . , zkp¬φ is equivalent to a
formula in Sk,r.

The opposite implication is also proved by induction on k. If k = 0 and player 2
has a winning strategy then u ≡0,r v and we are done. Now let k > 0 and fix a
winning strategy for player 2 in Gk,r(u, v). Towards a contradiction, suppose that
u �≤k,r v, then there is a ψ ∈ Sk,r such that u |= ψ and ¨ v �|= ψ. W.l.o.g. we
can assume that ψ is of the form ∃zk1 , . . . , zkr¬φ where φ ∈ Sk−1,r. Since u |= ψ,
player 1 can put the variables zk1 , . . . , z

k
r in u in such a way that the resulting

structure u′ satisfies ¬φ. Taking the values of zk1 , . . . , z
k
r in v according to the

winning strategy for player 2 we obtain a structure v′ that does not satisfy ¬φ.
But player 2 has a winning strategy in Gk−1,r(v′, u′). By induction, v′ ≤k−1,r u

′

and therefore v′ �|= φ. A contradiction. �

The next corollary of the previous lemma states that the concatenation of ν-
structures respects (under a reasonable assumption) the introduced preorder. We
omit the obvious proof using the game characterization of �k,r.

Lemma 3.7. Let ν be a finite set of variables, k ≥ 0, r ≥ 1, and u1, u2, v1, v2,
u1u2, v1v2 be ν-structures. Then u1 �k,r v1 and u2 �k,r v2 imply u1u2 �k,r v1v2.

For all k ≥ 0 and r ≥ 1, define c(k, r) by induction on k as follows: c(0, r) = 1
and c(k, r) = r+(r+1)c(k−1, r)+1. Until the end of this section, an upper index
on a word means the corresponding power of this word under concatenation.

Lemma 3.8. Let w ∈ A+, |w| ≡ 0 (mod d), and N1, N2 ≥ c(k, r). Then
wN1 ≤k,r wN2 .
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Proof. We can assume that N1 �= N2. It suffices to prove the assertion for
|N1 − N2| = 1 because for |N1 − N2| > 1 it will then follow by induction on
|N1 −N2|. We have to show that wN1 ≤k,r wN1+z where z = N2 −N1 ∈ {−1, 1}.
The proof is by induction on k. For k = 0 the inequality wN1 ≤k,r wN1+z is
true because wN1 and wN1+z satisfy the same atomic sentences of signature τ ′d
(the sentences are of the form i = j, i < j, S(i, j), Qa(i), P 0

d (i), . . . , P d−1
d (i) for

i, j ∈ {⊥,�}).
We assume that the inequality holds for k−1 ≥ 1 and prove it for k by describing

a winning strategy for player 2 in Gk,r(wN1 , wN2). Let in the first round player 1
put p his/her pebbles (for some p ≤ r) in wN1 . Since N1 ≥ c(k, r) the resulting
structure will have a factor wc(k−1,r)+1 without pebbles, i.e. the word wN1 may be
factorized as w1w

c(k−1,r)+1w2 where w1 and w2 are some powers of w containing
all the p pebbles zk1 , . . . , z

k
p . Hence, after the first round the left structure looks as

w′
1w

c(k−1,r)+1w′
2. Note that, before the answer of player 2, the right word looks

as wN1+z = w1w
c(k−1,r)+1+zw2. Player 2 puts his/her pebbles zk1 , . . . , zkp in this

word in a way to obtain w′
1w

c(k−1,r)+1+zw′
2. By induction hypothesis,

wc(k−1,r)+1+z ≤k−1,r w
c(k−1,r)+1,

hence, by Lemma 3.7,

w′
1w

c(k−1,r)+1+zw′
2 ≤k−1,r w

′
1w

c(k−1,r)+1w′
2.

Player 2 continues by the winning strategy in Gk−1,r(w1′wc(k−1,r)+1+zw2′,
w′

1w
c(k−1,r)+1w′

2). �
For any fixed k and r, define operations F and G on A+ by F (u) = uN and

G(u, v) = vMuvM where N = r + (r + 1)(2c(k, r) + 1) and M = N + c(k, r).

Lemma 3.9. Let u, v ∈ A+, |u| ≡ |v| ≡ 0 (mod d), k ≥ 0, r ≥ 1, and u �k,r v.
Then F (v) �k+1,r G(u, v).

Proof. We describe a winning strategy for player 2 in Gk+1,r(F (v), G(u, v)). Let in
the first round player 1 put his/her p pebbles (p ≤ r) in the word w1 = F (v) = vN .
By definition of N , the resulting structure has a factor v2c(k,r)+1 without pebbles,
i.e. the word w1 may be factorized as u1v

2c(k,r)+1u2 = u1v
c(k,r)vvc(k,r)u2 where u1

and u2 are some powers of v containing all the p pebbles. The resulting structure
looks then as w′

1 = u′1v
c(n,r)vvc(n,r)u′2. Note that the right word w2 = G(u, v)

may be factorized as w1v
M−NuvM−Nw1 = u1v

m1uvm2u2 where m1 ≥ c(k, r) and
m2 ≥ c(k, r). Player 2 answers by putting his/her p pebbles in w2 in a way
to obtain w′

2 = u′1v
m1uvm2u′2. By Lemma 3.8, vm1 �k,r vc(n,r). By Lemma

3.7, w′
2 �k,r w

′
1 hence player 2 has a winning strategy in Gk,r(w′

2, w
′
1). Player 2

proceeds by following this winning strategy. �
Proof of Theorem 3.3. To simplify notation, we prove here the following slightly

weaker alphabet-dependent version: for any k ≥ 1 there is a language Hk over the
alphabet Ak = {0, 1, . . . , k} with Hk ∈ Σρk \ Πτ

k. For the alphabet-independent
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version, see remarks in the corresponding proof in Section 5 where we establish a
strengthening of Theorem 3.3.

We define the set Hk by induction on k as follows:

H1 = A∗
1 · 1 ·A∗

1 and Hk+1 = A∗
k+1 · (k + 1) · (A∗

k \Hk) · (k + 1) · A∗
k+1 for k ≥ 1

(cf. Lem. 3.1 in [38,39]). Obviously, Hk ∈ Σρk for each k ≥ 1, so it remains to
show that Hk �∈ Πτ

k. By Corollary 3.2, it suffices to show that Hk �∈ Πτd
k for each

d ≥ 1. By Lemma 3.5, it suffices to find for any k, r ≥ 1 words uk, vk ∈ A+
k such

that uk �k,r vk, uk �∈ Hk and vk ∈ Hk. It is easy to see (by looking at the game
G1,r(u1, v1)) that the words u1 = 0d and v1 = 0d10d−10d = 0d102d−1 have the
desired properties for k = 1 and for all r ≥ 1.

Fix r ≥ 1 and suppose by induction on k that we have uk and vk with the
desired properties. By Lemma 3.7, x ≤k,r y where x = (k + 1)duk(k + 1)d and
y = (k + 1)dvk(k + 1)d. Set uk+1 = F (y) and vk+1 = G(x, y). By Lemma 3.9,
uk+1 �k+1,r vk+1. By definition of Hk+1, uk+1 �∈ Hk+1 and vk+1 ∈ Hk+1. �

4. Abstract difference hierarchies

In this section we make a couple of general remarks about the difference hier-
archy (DH) known also as the Boolean hierarchy.

Let S be any set. By a base in S we mean any class C of subsets of S which
is closed under union and intersection and contains ∅ and S as elements. For
any k < ω, let C(k) be the class of sets

⋃
i(L2i \ L2i+1), where L0 ⊇ L1 ⊇ · · ·

is a descending sequence of sets from C and Li = ∅ for i ≥ k. The sequence
{C(k)}k<ω is known as the difference hierarchy over C. As is well-known, C(k)∪co-
C(k) ⊆ C(k + 1) for every k, and

⋃
k C(k) = BC(C).

We will need the following relation between the DH’s over different bases.

Proposition 4.1. Let f : T → S be a surjection, C a base in S, M a base in T ,
and f(M) ∈ C for all M ∈ M. Then f−1(L) ∈ M(k) implies L ∈ C(k) for all
L ⊆ S and k < ω.

Proof. Let f−1(L) ∈ M(k), then f−1(L) =
⋃
i(M2i \M2i+1) for some M0 ⊇M1 ⊇

· · · , Mk = ∅, Mi ∈ M. Then f(M0) ⊇ f(M1) ⊇ · · · , f(Mk) = ∅, and f(Mi) ∈ C
for all i. It suffices to check that L =

⋃
i(f(M2i) \ f(M2i+1)) (then L ∈ C(k), as

desired).
First we check the inclusion L ⊆ ⋃

i(f(M2i)\f(M2i+1)). Let y ∈ L. Since f is a
surjection, y = f(x) for some x ∈ T . Since x ∈ f−1(L), x ∈M0, hence y ∈ f(M0).
It remains to show that y ∈ f(M2i+1) implies y ∈ f(M2i+2). Let y = f(x1) for
some x1 ∈M2i+1. Since x1 ∈ f−1(L), x1 ∈M2i+2 and therefore y ∈M2i+2.

The inclusion
L ⊆

⋃

i

(f(M2i) \ f(M2i+1))

is checked in the same manner. �
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The next notion is well-known from descriptive set theory [18].

Definition 4.2. A base C is said to have the separation property, if for every two
disjoint sets L,K ∈ C there is a set M ∈ C ∩ co-C with L ⊆ M ⊆ K. We say
that M separates L from K (note that it is equivalent to say that M separates K
from L).

The following easy fact is often of use.

Proposition 4.3. Let {Li}i∈I and {Kj}j∈J be finite families of subsets of S
and let Mi,j separates Li from Kj for all i ∈ I, j ∈ J . Then the set

⋃
i

⋂
jMi,j

separates L =
⋃
i Li from K =

⋃
j Kj.

Proof. We have Li ⊆ Mi,j ⊆ Kj for all i ∈ I, j ∈ J . Then Li ⊆
⋂
jMi,j ⊆

⋂
jKj

for all i ∈ I Therefore, L =
⋃
i Li ⊆

⋃
i

⋂
jMi,j ⊆

⋂
jKj = K. �

We will need the following fact about the DH’s over bases with the separation
property.

Proposition 4.4. Let C be a base with the separation property. Then for any
k < ω the class C(k + 1) ∩ co-C(k + 1) coincides with the class of sets of the form
(U ∩ L) ∪ (U ∩K), where U ∈ C ∩ co-C, L ∈ C(k) and K ∈ co-C(k).

Proof. Let M = (U ∩ L) ∪ (U ∩ K) where U ∈ C ∩ co-C, L ∈ C(k) and K ∈ co-
C(k). One easily checks (even without using the separation property) that M ∈
C(k + 1) ∩ co-C(k + 1).

Simplifying notation, we prove the opposite inclusion only for the typical par-
ticular case k = 2. Let M ∈ C(k + 1) ∩ co-C(k + 1). Then

M = L0 ∪ (L1 \ L2) and M = K0 ∪ (K1 \K2), (1)

for some sets L0 ⊇ L1 ⊇ L2 and K0 ⊇ K1 ⊇ K2 from C. Taking complements
from (1), we obtain

M = (L0 \ L1) ∪ L2 and M = (K0 \K1) ∪K2, (2)

hence L2 and K2 are disjoint. By the separation property, L2 ⊆ U ⊆ K2 for some
U ∈ C ∩ co-C. Intersecting the first equality in (1) with U we obtain

M ∩ U = (L0 ∩ U) ∪ (L1 ∩ U) = (L0 ∪ L1) ∩ U.

Intersecting the second equality in (2) with U we obtain M ∩ U = (K0 \K1) ∩U .
Therefore, M = (U∩L)∪(U∩K) where L = (K0\K1) ∈ C(2) and K = (L0∪L1) ∈
co-C(2). �

Next we formulate an obvious fact showing that the separation property survives
under some operation on bases.

Proposition 4.5. Let {Ci}i∈I be a family of bases in S such that every Ci has the
separation property and for all i, j ∈ I there exists a k ∈ I with Ci∪Cj ⊆ Ck. Then
C =

⋃
i Ci is a base in S with the separation property.
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Relate to any partial order (in fact, all the following notions and results in
this section apply also to preorders) P = (P ;≤) the base C in P consisting of
all upper sets of P (i.e., the sets L ⊆ P such that x ∈ L and x ≤ y imply
y ∈ L), including the empty set. By alternating chain of length k for a set K ⊆ P
we mean a sequence (x0, . . . , xk) of elements of P such that x0 ≤ · · · ≤ xk and
xi ∈ K ↔ xi+1 �∈ K for every i < k. Such a chain is called an 1-alternating chain
if x0 ∈ K, otherwise it is called a 0-alternating chain. Variants of the following
fact frequently appear when dealing with the DH’s.

Proposition 4.6. Let P = (P ;≤) be a partial order and C the base of upper sets
in P . For all K ⊆ P and k < ω, K ∈ C(k) iff K has no 1-alternating chain of
length k.

Proof. Let first K ∈ C(k), then K =
⋃
i(L2i \ L2i+1), where L0 ⊇ L1 ⊇ · · · is a

descending sequence of upper sets and Lk = ∅. Towards a contradiction, suppose
that (x0, . . . , xk) is an 1-alternating chain of length k for K. Since x0 ∈ K, we
have x0 ∈ L0. Since L0 is an upper set and x0 ≤ x1, x1 ∈ L0. Since x1 �∈ K,
x1 ∈ L1. Continuing in this manner, we obtain xk ∈ Lk = ∅, a contradiction.

In the opposite direction, let K have no 1-alternating chain of length k. For
any i < ω, let Li be the set of all x ∈ P such that there is an 1-alternating chain
(x0, . . . , xi) for K with xi ≤ x. Then L0 ⊇ L1 ⊇ · · · is a descending sequence
of upper sets and Lk = ∅. It remains to check that K =

⋃
i(L2i \ L2i+1). First

we check the inclusion from left to right. Let x ∈ K. Then x ∈ L0. It suffices
to show that x ∈ L2i+1 implies x ∈ L2i+2. Let x ∈ L2i+1, then there is an 1-
alternating chain (x0, . . . , x2i+1) for K with x2i+1 ≤ x. Then (x0, . . . , x2i+1, x) is
an 1-alternating chain for K, hence x ∈ L2i+2.

It remains to show that if x ∈ P \K then x �∈ ⋃
i(L2i \ L2i+1). If x �∈ L0, we

are done. Now let x ∈ L0. It suffices to show that x ∈ L2i implies x ∈ L2i+1, and
this is done exactly as in the preceding paragraph. �

We conclude this section by a result about the DH’s in well partial orders
(wpo) that is closely related to some facts in automata theory, e.g. to results
like Theorem 3.3 in [34]. Recall that a partial order (P ;≤) is a wpo if it has
neither infinite descending chains nor infinite antichains. By an ω-alternating
chain for a set K ⊆ P we mean an ω-sequence x0, x1, . . . of elements of P such
that x0 ≤ x1 ≤ · · · and xi ∈ K ↔ xi+1 �∈ K for every i < ω.

Proposition 4.7. Let P = (P ;≤) be a wpo and C the base of upper sets in P .
For all K ⊆ P , K ∈ BC(C) iff K does not have ω-alternating chains.

Proof. From left to right, the assertion follows from the last proposition and the
equality BC(C) =

⋃
k C(k). It remains to show that for any K ∈ P \BC(C) there

is an ω-alternating chain. By the last proposition, there are alternating chains for
K of arbitrary finite length.

Let ω∗ be the set of all finite sequences of natural numbers, including the empty
sequence ε. Let P ∪{⊥} be the partial order obtained by adjoining a new smallest
element ⊥ to P . We construct a partial function u : ω∗ → P ∪{⊥} as follows. Set
u(ε) = ⊥ and suppose, by induction on |σ|, σ ∈ ω∗, that u(σ) is already defined.
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If |σ| is even then find m ∈ ω and the elements v0, . . . , vm−1 ∈ P (if any) which
enumerate without repetitions the ≤-minimal elements in X = {v ∈ K | u(σ) ≤ v}
(since P is a wpo, the set X is finite). Then we set u(σi) = vi for i < m and u(σi)
is undefined for i ≥ m. For |σ| odd, the definition is similar but this time we use
the set X = {v ∈ P \K | u(σ) ≤ v}.

From the construction it follows that {σ ∈ ω∗ | u(σ) is defined} is an infinite
finitely branching tree (under the relation of being an initial segment). By König
lemma, there is an infinite path through this tree. The image of this path under
u provides a desired infinite alternating chain for K. �

5. Difference hierarchies over Στd
n and Στ

n

Here we establish the non-collapse property of the DH’s over the bases Στdk and
Στk, for each k ≥ 1. In [32,33] it was shown that the DH’s over the bases Σρk and
Σσk , k ≥ 1, do not collapse. The methods of those papers (using the Ehrenfeucht-
Fräıssé games) apply in a straightforward way to obtain the following.

Theorem 5.1. For all n, k > 0 it holds Σρk(n) �⊆ co-Στk(n). In particular,
Στdk (n) �⊆ co-Στdk (n) and Στk(n) �⊆ co-Στk(n) for all k, n, d > 0.

Before proving the theorem, first we note that from Corollary 3.2 it follows
that Στk(n) =

⋃
d Στdk (n), for all k, n ≥ 1. Next we establish some additional facts

on the preorders �k,r from Section 3. Recall that those preorders actually also
depend on a modulo d fixed in advance.

Lemma 5.2. For all k, n ≥ 1 and L ⊆ A+, L ∈ Στdk (n) iff there is an r ≥ 1 such
that L does not have 1-alternating chains of length n in (A+; �k,r).

Proof. Let L ∈ Στdk (n), so L =
⋃
i(L2i\L2i+1) for some sets L0 ⊇ L1 ⊇ · · · , Ln = ∅

from Στdk . By Lemma 3.5, there is an r ≥ 1 such that all L0.L1, . . . are upper sets
in (A+; �k,r). By Proposition 4.6, L does not have 1-alternating chains of length
n in (A+; �k,r). The opposite implication is checked in a similar fashion. �

Using the operations F,G from Section 3, let us define an operation (u0, . . . ,
un) �→ (ũ0, . . . , ũn) on tuples of words in A+ as follows:

ũ0 = Fn(u0
n), ũ1 = Fn−1(u1

n−1), . . . , ũn = un0

where u0
i = ui for all i ≤ n, u1

i = G(u0
i , u

0
n) for all i ≤ n − 1, u2

i = G(u1
i , u

1
n−1)

for all i ≤ n − 2 and so on. Note that in this definition the upper indices on
words are just indices, not the powers of words, while the upper indices on F
mean composition.

Lemma 5.3. Let u0 �k,r · · · �k,r un and |ui| ≡ 0 (mod d) for all i ≤ n. Then
ũ0 �k+1,r · · · �k+1,r ũn.
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Proof. We have u0
0 �k,r · · · �k,r u

0
n. By definition of the operation G and by

Lemma 3.7, u1
0 �k,r · · · �k,r u

1
n−1. Iterating this argument we obtain that ui0 �k,r

· · · �k,r u
i
n−i for all i ≤ n. By Lemma 3.9,

F (uin−i) �k+1,r G(uin−i−1, u
i
n−i) = ui+1

n−i−1

for all i < n. By Lemma 3.8,

ũi = Fn−i(uin−i) �k+1,r F
n−i−1(ui+1

n−i−1) = ũi+1

for all i < n, as desired. �

Proof of Theorem 5.1. As in the proof of Theorem 3.3, for simplicity of notation
we prove first the following alphabet-dependent version: for all k, n ≥ 1 there is a
language Lnk over the alphabet Ak = {0, 1, . . . , k} with Lnk ∈ Σρk(n) \ co-Στk(n).

We define the sets Hn
k by induction on k as follows:

Hn
1 = (A∗

1 ·1)n ·A∗
1 and Hn

k+1 = A∗
k+1 · (k+1) · (A∗

k \Hn
k ) · (k+1) ·A∗

k+1 for k > 1.

In particular, Hn
1 is the set of words over the binary alphabet {0, 1} having at

least n entries of 1, and Hn
2 is the set of words over {0, 1, 2} having a factor 2u2

where u is a binary word with less than n entries of 1.
Obviously, Hn

k ∈ Σρk for each k, n ≥ 1, H1
k ⊇ H2

k ⊇ · · · for any odd k, and
H1
k ⊆ H2

k ⊆ · · · for any even k. Let Lnk be the standard Boolean combination of
H1
k , . . . , H

n
k from the definition of the nth level of the DH, in particular,

L4
1 = (H1

1 \H2
1 ) ∪ (H3

1 \H4
1 ) and L4

2 = (H2
1 \H1

2 ) ∪ (H4
2 \H3

2 ).

Then we have Lnk ∈ Σρk(n) for each k ≥ 1 and it remains to show that Lnk �∈ co-
Στk(n). Since Στk(n) =

⋃
dΣτdk (n), it suffices to show that Lnk �∈ co-Στdk (n) for

each d ≥ 1. By Lemma 5.2, it suffices to find for any r ≥ 1 a 0-alternating chain
(uk0, . . . , ukn) for Lnk in (A+; �k,r).

The chains are defined by induction on k as follows: set

u10 = 0d, u1i = 0d(102d−1)i for i ∈ {1, . . . , n},

and (uk+1,0, . . . , uk+1,n) = (ũk0, . . . , ũkn) for k ≥ 1. Obviously, |uki| ≡ 0 (mod d)
for all k ≥ 1 and i ≤ n. Since it is easy to find a winning strategy for player 2 in the
game G1,r(u1,i, u1,i+1) for each i < n, we have u10 �1,r · · · �1,r u1n. By definition
of Hn

1 and Ln1 , u1i ∈ Ln1 iff i is even, for all i ≤ n. Thus, (u10, . . . , u1n) is a
0-alternating chain for Ln1 in (A+; �1,r). Assume by induction that (uk0, . . . , ukn),
k ≥ 1, is a 0-alternating chain for Lnk in (A+; �k,r). By Lemma 5.3, uk+1,0 �k+1,r

· · · �k+1,r uk+1,n. By definition of Hn
k+1 and Lnk+1, uk+1,i ∈ Lnk+1 iff i is even,

for all i ≤ n. Thus, (uk+1,0, . . . , uk+1,n) is a 0-alternating chain for Lnk+1 in
(A+; �k+1,r). This completes the proof of the alphabet-dependent version.
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For the alphabet-independent version, a slight modification of the proof above
suffices. Namely, for any fixed alphabet A with 0, 1 ∈ A we consider instead of
Hn
k above the sets Mn

k defined by

Mn
1 = (A∗ · 1)n ·A∗ and Mn

k+1 = A∗ · 12k · (A∗ \Mn
k ) · 12k ·A∗ for k ≥ 1.

A slight modification of the argument above shows that the corresponding sets Lnk
have the desired property. �

6. Difference hierarchies within BC(Στd
1 )

In this section we consider some useful “local” DH’s within BC(Στd1 ) and gen-
eralize the corresponding theory for signature σ developed independently in [26]
and [14]. To this end, we consider some relevant partial orders on words.

Recall that in [14,26] for any k < ω the following partial order on A+ was stud-
ied: u ≤k v, if u = v ∈ A≤k or u, v ∈ A>k, pk(u) = pk(v), sk(u) = sk(v), and there
is a k-embedding f : u → v. Here pk(u) (sk(u)) is the prefix (respectively, suffix)
of u of length k, and the k-embedding f is a monotone injective function from
{0. . . . , |u|−1} to {0. . . . , |v|−1} such that u(i) · · ·u(i+k) = v(f(i)) · · · v(f(i)+k)
for all i < |u| − k. Note that the relation ≤0 is just the inclusion of words. We
say that a k-embedding f is a (k, d)-embedding, if P rd (i) implies P rd (f(i)) for all
i < |u| and r < d.

Definition 6.1. For all u, v ∈ A+, k < ω and d > 0, let u ≤dk v denote that
u = v ∈ A≤k or u, v ∈ A>k, |u| ≡ |v| (mod d), pk(u) = pk(v), sk(u) = sk(v), and
there is a (k, d)-embedding f : u→ v.

Remarks.
1. Note that for d = 1 the order ≤dk coincides with ≤k, hence our results about

≤dk will subsume the corresponding results about ≤k in [14,26].
2. In the definition of ≤dk we could omit the requirement |u| ≡ |v| (mod d). The

resulting theory would be essentially the same.

Proposition 6.2.
(1) (A+;≤dk) is a well partial order.
(2) If k ≤ l and d divides e then u ≤el v implies u ≤dk v.

Proof.
(1) We may consider a word u = u0 · · ·un of length n+ 1 over the alphabet A

as a word gd(u) = (u0, r0) · · · (un, rn) over the alphabet B = A × {0, . . . , d − 1},
where ri (for any i ≤ n) is the unique number r < d satisfying P rd (i). Then gd is an
isomorphic embedding of (A+;≤dk) into (B+;≤k). Since (B+;≤k) is a wpo [14,26],
so is also (A+;≤dk).

(2) It suffices to show that u ≤dk+1 v implies u ≤dk v and u ≤ek v implies u ≤dk v.
Let u ≤dk+1 v. Then gd(u) ≤k+1 gd(v), then gd(u) ≤k gd(v) [14,26], hence u ≤dk v.
Now let u ≤ek v. Since |u| ≡ |v| (mod e) implies |u| ≡ |v| (mod d) and, as one easily
checks, every (k, e)-embedding is also a (k, d)-embedding, we obtain u ≤dk v. �
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Let Cdk be the class of all upper sets in (A+;≤dk). From Propositions 6.2, 4.6
and 4.7 we immediately obtain the following information about the DH over the
base Cdk .
Theorem 6.3.

(1) For all L ⊆ A+ and n < ω, L ∈ Cdk(n) iff L has no 1-alternating chain
with respect to ≤dk of length n.

(2) For any L ⊆ A+, L ∈ BC(Cdk) iff L has no ω-alternating chain with respect
to ≤dk.

The next result generalizes the corresponding fact in [14,26].

Theorem 6.4. The classes of languages Cdk(n) are decidable for all d > 0 and
k, n < ω (i.e., given a deterministic finite automaton (dfa) M, it is decidable to
check whether L = L(M) is in Cdk(n)).

Proof. Our proof here is different from those given in [14,26] for the particular
case d = 1. Simplifying notation, we consider only a typical particular case n = 2,
then Cdk(2) is the class of differences of sets in Cdk . It suffices to show that both the
relation “L(M) ∈ Cdk(2)” and its negation are computably enumerable (c.e.). By
Proposition 6.2(1), Cdk(2) coincides with the class of sets F̌ = {y | ∃x ∈ F (x ≤dk y)},
for finite F ⊆ A+. Therefore, L(M) is in Cdk(2) iff there are finite sets F,G ⊆ A+

such that Cdk(2) = F̌ \ Ǧ. The relation “Cdk(2) = F̌ \ Ǧ” is computable because one
can compute τd-sentences φ, ψ such that F̌ = Lφ and Ǧ = Lψ (as well as dfa’s A
and B with L(A) = F̌ ) and L(B) = Ǧ). Thus, the relation “L(M) ∈ Cdk(2)” is c.e.

By Theorem 6.3, L(M) �∈ Cdk(2) iff there is an 1-alternating chain for L(M) of
length 2, iff there are words x0 ≤dk x1 ≤dk x2 such that x0, x2 ∈ L and x1 �∈ L.
Since the relation “x ≤dk y” is computable, the relation “L(M) �∈ Cdk(2)” is c.e.
Therefore, the relation “L(M) ∈ Cdk(2)” is computable. �
We conclude this section by a result on the separation property.

Theorem 6.5. For all k < ω and d > 0, the class Cdk has the separation property.

Proof. Let L,K be disjoint sets in Cdk . By Proposition 6.2(1), any of L,K is a
finite union of “cones” of the form {w ∈ A+ | u ≤dk w} (as is well-known and easy
to see, a poset P is a wpo iff any upper set in P is a finite union of cones). By
Proposition 4.3, w.l.o.g. we may assume that both L and K are such cones, i.e.
L = {w ∈ A+ | u ≤dk w} and K = {w ∈ A+ | v ≤dk w} for some u, v ∈ A+. If
|u| ≤ k then the set L = {u} is in Cdk ∩ co-Cdk and separates L from K. The case
|v| ≤ k is similar hence let us assume that u, v ∈ A>k.

If pk(u) �= pk(v) then the set {w ∈ A+ | pk(w) = pk(u)} is in Cdk ∩ co-Cdk and
separates L from K. The case sk(u) �= sk(v) is considered similarly. If |u| �≡ |v|
(mod d) then the set {w ∈ A+ : |w| ≡ |u| (mod d)} is in Cdk ∩ co-Cdk and separates
L from K.

We claim that the remaining case (when |u|, |v| > k, pk(u) = pk(v), sk(u) =
sk(v), and |u| ≡ |v| (mod d)) is not realized because in this case it holds L∩K �= ∅.
To see this, let (u0, . . . , ul), l > 0, be the sequence of all (k + 1)-factors of u, i.e.
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ui = u(i) · · ·u(i+ k) for every i ≤ l. Let (v0, . . . , vm) be the similar sequence for
v. It suffices to show that for suitable words x0, . . . , xl, y0, . . . , ym ∈ A∗ the word
w = u0x0 · · ·ulxlv0y0 · · · vmymvm is in L ∩K. Indeed, we only have to care that
the lengths of the words x0, . . . , xl, y0, . . . , ym satisfy the following equivalences
modulo d:

|u0x0| ≡ 0, |u0x0u1x1| ≡ 1, . . . , |u0x0 · · ·ul−1xl−1| ≡ l − 1

(this guarantees the existence of a (k, d)-embedding of u into w),

|u0x0 · · ·ulxl| ≡ d− 1, |u0x0 · · ·ulxlv0y0| ≡ 0, . . . , |u0x0

· · ·ulxlv0y0 · · · vm−1ym−1| ≡ m− 1

(this guarantees the existence of a (k, d)-embedding of v into w), and |w| ≡ |u|
(this together with the conditions above guarantees u ≤dk w and v ≤dk w). �

From the last proof we easily extract the following characterization of the class
Cdk ∩ co-Cdk in terms of regular expressions.

Corollary 6.6. The class Cdk ∩ co-Cdk consists exactly of the finite unions of lan-
guages w0, w0(Ad)∗w1, where w0, w1 are nonempty words of length ≤ k.

7. Difference hierarchies over Στd
1 and Στ

1

In this section we provide additional information on the DH’s over Στd1 and Στ1 .
First we relate these DH’s to those from the preceding section.

Theorem 7.1. It holds Στd1 =
⋃
k Cdk and Στ1 =

⋃
k,d Cdk .

Proof. The second equality follows from the first one and Corollary 3.2. Towards
the first equality, let first L ∈ Cdk for some k, hence L is a finite union of the cones
{w ∈ A+ | u ≤dk w}. It is easy to write down a Σ1-sentence φ of signature τd such
that {w ∈ A+ | u ≤dk w} = Lφ. Therefore, L ∈ Στd1 .

Conversely, let L ∈ Στd1 . By Corollary 9.6 (sorry for this reference forwards;
though definitely non-elegant, it does not in fact cause any principal problem be-
cause there is no logical circle), L is a finite union of sets w0(Ad)∗w1 · · · (Ad)∗wn
where n ≥ 0 and wi ∈ A+. Easy manipulations show that w.l.o.g. we may
assume that all the words wi in any fixed term w0(Ad)∗w1 · · · (Ad)∗wn
have one and the same length k. It is then straightforward to check that
w0(Ad)∗w1 · · · (Ad)∗wn ∈ Cdk . Therefore, L ∈ Cdk . �

From the proof of Theorem 7.1 and from Corollary 3.2 we obtain the following
characterization of Δτd

1 and Δτ
1 in terms of regular expressions.

Corollary 7.2.
(1) For any d > 0, the class Δτd

1 consists exactly of the finite unions of lan-
guages w0, w0(Ad)∗w1, where w0, w1 ∈ A+.
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(2) The class Δτ
1 consists exactly of the finite unions of languages

w0, w0(Ad)∗w1, where w0, w1 ∈ A+ and d > 0.

The following assertion is an immediate consequence of Theorem 6.5 and Propo-
sition 4.5.

Theorem 7.3. The classes Στd1 (d > 0) and Στ1 have the separation property.

Next we generalize some results from [14] about the DH over Σσ1 to the DH over
Στd1 , for each d > 0. We start with recalling (in slightly different notation) some
notions from [14].

Let A = (Q,A, δ, i, F ) be a deterministic finite automaton (dfa) over A and
cA = (n + 1)(n+1)n+1

, where n is the number of states in A. A word u ∈ A+

is called A-idempotent, if δuu = δu, where δu is the function on the states of A
defined by δu(s) = δ(s, u). Let B = BA be the new (large) alphabet the let-
ters of which being the nonempty words over A of length ≤ cA. Let U = UA
be the subset of B consisting of all A-idempotents. By structured word over
A we mean a word over B of the form w0u1w1 · · ·unwn, where n ≥ 0 and
all ui are A-idempotents. Following [14], we denote the structured words as
w0 u1 w1 u2 w2 · · · um wm emphasizing a central role of the idempotents in sub-
sequent considerations. Let S = SA be the set of all structured words over B. For
any l, let fl(w0 u1 w1 u2 w2 · · · um wm) = w0u

l
1x1 · · ·ulnwn. We shorten f1 to f .

In [14] it was shown that f : SA → A+ is a surjection.
For x, y ∈ SA we write x ≤A y if there exist words ui ∈ A+ and xi, zi ∈ SA

such that

x = x0 u1 x1 u2 x2 · · · um xm and
y = x0 u1 z1 u1 x1 u2 z2 u2 x2 · · · um zm um xm.

This partial order was the key in understanding the DH over Σσ1 , namely we have
the following characterization.

Theorem 7.4 [14]. Let A be a dfa, L = L(A) ⊆ A+ and n ≥ 1. Then L ∈ Σσ1 (n)
if and only if f−1(L) has no 1-alternating chain of length n in (SA;≤A).

The cited results from [14] are generalized to the DH over Στd1 for each d > 0 as
follows. Let Bd = BdA be the set of words v ∈ A+ such that |v| ≡ 0 (mod d) and
|v| ≤ cA ·d. Let Ud = UdA be the subset of Bd consisting of all A-idempotents. By
d-structured word over A we mean a structured word w0 u1 w1 u2 w2 · · · um wm
such that w0, . . . , wm−1 ∈ Bd, u1, . . . , un ∈ Ud, and wm ∈ A+, |wm| ≤ cA ·d (thus,
wn is not necessarily in Bd). Let SdA denote the set of d-structured words over A.
The function fl is defined exactly as above. For x, y ∈ SdA, let x ≤dA y mean that
x ≤A y and |f(x)| ≡ |f(y)| (mod d). We then have the following generalization of
some facts in [14].

Proposition 7.5. Let A be a dfa and d > 0.
(1) The map f : SdA → A+ is a surjection.
(2) (SdA;≤dA) is a well partial order.
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(3) If M is an upper set in (SdA;≤dA) then f(M) ∈ Cd.
(4) If L = L(A) ∈ Στd1 then f−1(L) is an upper set in (SdA;≤dA).

Proof.
(1) Let v ∈ A+. Represent v in the form v = v0 · · · vn where 0 < |vn| ≤ d and

|vi| = d for all i < n. Applying the loop Lemma 6 from [14] (see also a related
Th. 2.1 for finite semigroups in [19] attributed to Ramsey) to this factorization of
v, we obtain a coarser factorization v = w0u1x1 · · ·unwm for some m ≥ 0 such
that w0 u1 w1 · · · um wm ∈ SdA, as desired.

(2) is checked exactly as Theorem 7 in [14].
(3) is checked exactly as Theorem 16 (2) in [14].
(4) Let x ∈ f−1(L), i.e. f(x) ∈ L, and x ≤A y. We have to show that

y ∈ f−1(L), i.e. f(y) ∈ L. By Theorem 7.1, L ∈ Cdk for some k. It is easy to
see that fk+1(x) ≤dk fk+1(y). Since fk+1(x) is obtained from f(x) by insertion of
idempotents, fk+1(x) ∈ L. Since L is an upper set in (A+;≤dk), fk+1(y) ∈ L and
hence also f(y) ∈ L. �

The next generalization of Theorem 7.4 follows immediately from Proposi-
tions 7.5 and 4.1.

Theorem 7.6. Let L be the regular language recognized by a dfa A and let n, d > 0.
Then L ∈ Στd1 (n) iff f−1(L) has no 1-alternating chain of length n in (SdA;≤dA).

Using the results above we obtain the following decidability result also generalizing
the corresponding fact from [14].

Theorem 7.7. The classes of languages Στd1 (n) are decidable for all n, d > 0 (i.e.,
given a dfa A, it is decidable to check whether L = L(A) is in Στd1 (n)).

Proof. One way to show this is to observe that a version of the corresponding
argument from Theorem [14] works also for our more general situation. It is also
possible to give an alternative shorter proof as follows. It suffices to show that
both the relation “L(A) ∈ Στd1 (n)” and its negation are c.e. By definition, L(A) is
in Στd1 (n) iff there is a sentence φ of signature τd such that φ is a certain Boolean
combination of n existential sentences and L(A) = Lφ. Since the last relation is
computable, the relation “L(A) ∈ Στd1 (n)” is c.e. By Theorem 7.6, L(A) �∈ Στd1 (n)
iff there is an 1-alternating chain for f−1(L) of length n in (SdA;≤dA) i.e. there are
x0 ≤dA · · · ≤dA xn such that f(x2i) ∈ L and f(x2i+1) �∈ L. Since f is a computable
function and (SdA;≤dA) is a computable structure, the relation “L(M) �∈ Στd1 (n)”
is c.e. Thus, the relation “L(M) ∈ Στd1 (n)” is computable. �

Remarks.
1. We do not currently know whether the classes of languages BC(Στd1 ), Στ1(n)

(for n > 1) and BC(Στ1) are decidable. The decidability of Στ1 follows from [12]
and a result in the next section.

2. In this paper we discuss only the finite levels of the DH’s. As is well-known,
in descriptive set theory and computability theory also natural transfinite ver-
sions of the DH’s (namely the Hausdorff and Ershov hierarchies) are quite useful.
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Currently we do not know a useful transfinite version of the DH in the context of
automata theory, in particular a transfinite DH over Στd1 that exhausts Δτd

2 .

8. plt-reducibility

In this section we start our investigation of reducibilities on regular sets by
discussing a reducibility closely related to complexity theory. It was introduced
in [3] and independently in [43].

Definition 8.1.

• A language L ⊆ A∗ is polylogtime reducible to K ⊆ B∗, for short L ≤plt K,
if there exist functions f : A∗ × N → B and g : A∗ → N, computable in
polylogarithmic time (on a deterministic Turing machine which treats the
input word as an oracle) such that x ∈ L ↔ f(x, 1)f(x, 2) . . . f(x, g(x)) ∈
K for every x ∈ A∗.

• By plt-function we mean any function of the form x �→ f(x, 1)f(x, 2) . . .
f(x, g(x)) where f and g are computable in polylogarithmic time.

• A language L is plt-decidable, if its characteristic function is computable
in polylogarithmic time.

Examples.
1. The function u �→ pu on A+ which adds a fixed prefix p ∈ A∗ to a word u is

a plt-function. The same of course applies to the operation of adding a suffix to a
word.

2. Let h : A+ → B+ be a semigroup morphism. Such functions are defined by
their values h : A→ B+ on the letters ofA (i.e., words of length 1) because we have
h(a0 · · · al) = h(a0) · · ·h(al), where ai ∈ A. It is easy to see that if such a function
h is length-multiplying (i.e., it satisfies the property ∀a, b ∈ A(|h(a)| = |h(b)|))
then it is a plt-function.

To explain the relationship of plt-reducibility to complexity theory, let us recall
some relevant definitions. Consider a polynomial-time nondeterministic Turing
machine M working on an input word x over some alphabet B and printing a
letter from another alphabet A after finishing any computation path. We assume
w.l.o.g. that the machine M , in every step, splits a computation path into at
most two computation paths (hence, a computation path of M on input x can be
described by a word from {0, 1}∗). Those printed letters from A are the leaves
of the binary tree defined by the nondeterministic choices of M on input x. An
ordering of the tuples in the program of M determines a left-to-right ordering of
all the leaves. In this way, M may be considered as a deterministic transducer
computing a total function M : B∗ → A+. A machine M as above is balanced if
for every input x there exists an m ≥ 0 and an r ∈ {0, 1}m such that

{s | s ∈ {0, 1}m ∧ s ≤ r} · {0, 1} ∪ {s | s ∈ {0, 1}m ∧ s > r}

is the set of all computation paths of M on x.
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Now, relate to any language L ⊆ A+ (called in this situation a leaf language)
the languageM−1(L) ⊆ B∗. Denote by Leafb(L) the set of languagesM−1(L), for
all balanced machines M , and denote by Leafu(L) the set of languages M−1(L),
for all machines M (not necessarily balanced) specified above. Obviously, we have
Leafb(L) ⊆ Leafu(L) for every language L, and there exist languages L where
Leafb(L) = Leafu(L) is unlikely (e.g., Leafb((11)∗) = P, Leafu((11)∗) = ⊕P and
it is widely believed that P �= ⊕P, see [45]).

It turns out that many important complexity classes have natural and useful
characterizations in terms of leaf languages (see [45] and references therein). The
following theorem from [3,43] relates plt-reducibility to the balanced version of leaf
language definability.

Theorem 8.2. For all languages L and K, L ≤plt K iff Leafb(L)O ⊆ Leafb(K)O

for every oracle O.

This result and the fact that the regular languages are most natural to use
as leaf languages show that the investigation of plt-reducibility (especially on the
regular sets) is important. For some results in this direction see [12,38,39,45]. In
particular, there is a greatest element (i.e. a complete set) in (R;≤plt), and the
class of complete sets coincides with the class of regular languages L such that the
syntactic monoid M(L) contains a non-solvable subgroup [17]. Here we establish
some additional facts on the plt-reducibility.

We start with the following obvious fact in which we, for simplicity of nota-
tion, identify preorders with the corresponding quotient partial orders (i.e., degree
structures).

Proposition 8.3.
(1) {∅} and {A+} are two distinct minimal elements of the degree structures

(P (A+);≤plt) and (R;≤plt) which are below any other element.
(2) The structures (P (A+);≤plt) and (R;≤plt) are upper semilattices under

the supremum operation L ⊕K = aL ∪ (A \ a)K where a is a fixed letter
from A.

(3) The structure (P ′(A+);≤plt) is a distributive upper semilattice with the
smallest degree consisting exactly of the non-trivial plt-decidable languages.

Remark. We do not currently know whether the structure (R′;≤plt) is a dis-
tributive upper semilattice (i.e., whether it satisfies ∀x, y, z(x ≤ y ∪ z → ∃y′ ≤
y, z′ ≤ z(x = y′ ∪ z′))).

We need characterizations of some classes of regular languages in terms of the
so called forbidden patterns in (the transition graphs of) automata recognizing
them.

Definition 8.4. Let A = (Q,A, δ, s0, F ) be a dfa.
(1) A balanced counting pattern for A is formed by states s1, . . . , sn (for some

n ≥ 2) and words x, z, u, v such that: δ(s0, x) = s1, δ(si, u) = si for all
i ∈ {1, . . . , n}, δ(si, v) = si+1 for all i ∈ {1, . . . , n − 1}, δ(sn, v) = s1,
δ(s1, y) ∈ F , δ(s2, y) �∈ F , and |u| = |v|.
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Figure 1. The balanced counting pattern with |u| = |v|.

Figure 2. The balanced coUP pattern with |u| = |v|.

Figure 3. The balanced coNP pattern with |u| = |v|.

Figure 4. The balanced co1NP pattern with |u| = |v|.



HIERARCHIES AND REDUCIBILITIES ON REGULAR LANGUAGES 117

(2) A balanced coUP-pattern for A is formed by states s1, s2 and words x, z, u, v
such that: δ(s0, x) = s1, δ(si, u) = si for i = 1, 2, δ(s1, v) = s2, δ(s1, z) ∈
F , δ(s2, z) �∈ F , and |u| = |v|.

(3) A balanced coNP-pattern for A is formed by states s1, s2 and words x, z, u, v
such that: δ(s0, x) = s1, δ(si, u) = si for i = 1, 2, δ(s1, v) = s2 = δ(s2, v),
δ(s1, z) ∈ F , δ(s2, z) �∈ F , and |u| = |v|.

(4) A balanced co1NP-pattern for A is formed by states s1, s2, . . . , sn (for some
n ≥ 3) and words x, z, u, v such that: δ(s0, x) = s1, δ(si, u) = si for all
i ∈ {1, . . . , n}, δ(si, v) = si+1 for all i ∈ {1, . . . , n − 1}, δ(sn, v) = sn,
δ(s1, z), δ(s3, z) . . . , δ(sn, z) ∈ F , δ(s2, z) �∈ F , and |u| = |v|.

The definition is illustrated by Figures 1–4.
Let us formulate a characterization of the relation L ≤plt 0∗1(0 ∪ 1)∗ which is

a “balanced” version of the corresponding result from [2,24] for the “unbalanced”
model. It follows immediately from [12,13].

Theorem 8.5. Let L be a regular language and A the minimal automaton recog-
nizing L. The following conditions are equivalent:

(1) L ≤plt 0∗1(0 ∪ 1)∗;
(2) A does not have balanced coUP-patterns;
(3) A does not have balanced coNP-, co1NP- and counting patterns;
(4) L is a finite union of languages of the form w0(Ad)∗w1 · · · (Ad)∗wn where

d > 0, n ≥ 0 and wi ∈ A∗.

Proof. First note that our versions of the balanced patterns are slightly different
from those in [12,13] where they are defined only for the minimal automata. The
obvious relation between them is that a dfa A has a balanced pattern (of any of
the four types) in our sense iff the equivalent minimal automaton has a balanced
pattern (of the same type) in the sense of [12,13]. Thus the equivalence of (1), (2)
and (4) follows from Theorem 8 in [13] while the equivalence of (2) and (3) follows
from the proof of Corollary 11 in [13]. �

Our next result states some relationships between the τ -hierarchy and the plt-
reducibility.

Theorem 8.6.
(1) For every n > 0 there exists K ∈ Σσn such that L ≤plt K for all L ∈ Στn.
(2) For any regular language L, L ≤plt 0∗1(0 ∪ 1)∗ iff L ∈ Στ1 .

Proof.
(1) Let K = Hn be the language over the alphabet An = {0, 1, . . . , n} from

the proof of Theorem 3.3. Then Hn ∈ Σρn ⊆ Σσn for each n ≥ 1. Let L ∈ Στn
and L ⊆ A+, then L ∈ Στdn for some d > 0. Let f : A+ → A+

n be the function
constructed in the proof of Lemma 3.1 in [39] (only this time the formula φ from
that proof is a quantifier-free formula of signature τd). One easily checks that f is
a plt-function. Since L = f−1(Hn) by Lemma 3.1 in [39], L ≤plt K.

This proves (1) but only for the alphabet-dependent mode. To obtain the
alphabet-independent proof, we slightly modify the encoding used in the proof of
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Theorem 3 in [39] (and in [27]). It suffices to find a language K over A1 = {0, 1}
with the desired property. For n = 1 we can take K = H1. For n > 1, consider a
length-multiplying injective homomorphism h : A∗

n → A∗
1 such that for any a ∈ An

the binary word h(a) is in 0A∗
10 and has no factor 00 (such an h obviously exists,

e.g. for n = 2 we can set h(0) = 011110, h(1) = 010110 and h(2) = 011010).
It is easy (similarly to [27] where we used a slightly different encoding with

similar properties, so the argument applies also to our encoding here) to relate
to any sentence φ of signature σAn a sentence φ′ of signature σA1 such that the
following conditions hold:

(i) for any w ∈ A+, w |= φ iff h(w) |= φ′;
(ii) if φ is a Σn-sentence then so is also φ′.

Now let φ be a Σn-sentence of signature σAn with Hn = Lφ, and let C = Lφ′ .
Then C ⊆ A+

1 , C ∈ Σσn and Hn = h−1(C). But h is a plt-function (see Ex. 2 at
the beginning of this section) hence Hn ≤plt C and C has the desired properties.

(2) Let L ∈ Στ1 . By the proof of (1), L ≤plt H1 = 0∗1(0 ∪ 1)∗. Conversely, let
L ≤plt 0∗1(0 ∪ 1)∗. By Theorem 8.5, L is a finite union of languages of the form
w0(Ad)∗w1 · · · (Ad)∗wn, where n ≥ 0, d > 0 and wi ∈ A+. One easily writes down
an existential sentence φ of signature τd such that w0(Ad)∗w1 · · · (Ad)∗wn = Lφ.
Therefore, L ∈ Στ1 . �

Corollary 8.7.

(1) For all n, d > 0, there is a plt-complete set in Στdn and Στn.
(2) The class Στ1 is a principal ideal of (R;≤plt).
(3) Στ1 coincides with the class of finite unions of languages of the form

w0(Ad)∗w1 · · · (Ad)∗wn, where d > 0, n ≥ 0 and wi ∈ A+.

Proof. Follows from Theorems 8.6(2) and 8.5. �

Remarks.
1. We do not know whether Στn is a principal ideal of (R;≤plt) for n > 1.
2. A proof similar to the proof of Theorem 8.6(1) (with the use of slight modi-

fications of the proofs from Sect. 3 of [39]) shows that for any alphabet every level
of the difference hierarchy over Στn has a plt-complete set.

3. By [5], the class of quasi-aperiodic languages coincides with the closure of
the class of finite languages and the languages (Ad)∗, d ≥ 1, under the Boolean
operations and concatenation. We guess that all the classes Στn,BC(Στn) may be
characterized in terms of regular expressions in the similar way to the well-known
characterization of Σσn,BC(Σσn) in [40] and of of Σρn,BC(Σρn) in [23]. The item (3)
in Corollary 8.7 provides such a characterization for n = 1.

Next we characterize the quasi-aperiodic languages in terms of forbidden pat-
terns. Recall (see e.g. Th. V.1.1 in [35]) that the syntactic monoid M(L) may be
interpreted as an automaton recognizing L.

Theorem 8.8. For every regular language L the following conditions are equiva-
lent.

(1) L is FOτ -axiomatizable.
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(2) Every finite automaton recognizing L has no balanced counting pattern.
(3) The automaton M(L) has no balanced counting pattern.
(4) The minimal automaton m(L) of L has no balanced counting pattern.

Proof.
(1)→(2). Let L be FOτ -axiomatizable, then L ∈ Στn for some n > 0. By

Theorem 8.6(1), L ≤plt H for some H ∈ Σσn. By Theorem 8.2, Leafb(L)O ⊆
Leafb(H)O for all oracles O. It is known [45] that Leafb(H)O ⊆ PHO for all O,
hence Leafb(L)O ⊆ PHO for all O (PH is the class of sets in the polynomial-time
hierarchy).

Toward a contradiction, let A = (Q,A, δ, s0, F ) be a dfa which recognizes L
and has a balanced counting pattern for some n > 1 as in Figure 1, with distinct
states s1, . . . , sn. Let K ⊆ {0, 1}+ be the language of all binary words w with
#1(w) ≡ i (mod n) for some i < n such that δ(si, z) is an accepting state of A
(so 0 ∈ K and 1 �∈ K). One easily checks that the plt-function (see examples of
the plt-functions at the beginning of this section) f : {0, 1}+ → A+ defined by
f(y) = xh(y)z, where h : {0, 1}+ → A+ is the length-multiplying homomorphism
satisfying h(0) = u and h(1) = v, reduces K to L. By the proof of Lemma 6
from [1], w.l.o.g. we may assume that n is prime. Let Mn ⊆ {0, 1}+ be the set
of words with #1(w) ≡ 0 (mod n). Define a function g on {0, 1}+ as follows.
Let |g(w)| = |w|n−1 and for every i ∈ {1, . . . , |w|n−1} the i-th letter in g(w) is
1 iff w(i1) = · · · = w(in−1) = 1, where (i1, . . . , in−1) is the i-th tuple in the
lexicographic ordering of {1, . . . , |w|}n−1. One easily checks that g is a plt-function
and #1(g(w)) = (#1(w))n−1. By Fermat’s theorem, #1(g(w)) ≡ 0 (mod n) if
#1(w) ≡ 0 (mod n) and #1(g(w)) ≡ 1 (mod n) otherwise. Hence, g reduces Mn

to K and therefore Mn ≤plt L.
By Theorem 8.2, Leafb(Mn)O ⊆ Leafb(L)O ⊆ PHO for all oracles O, which

contradicts to a well-known fact of complexity theory (see [45]).
(2)→(3) and (2)→(4) are obvious.
(3)→(1). By Theorem 2.1, it suffices to assume that L is not quasi-aperiodic and

find a balanced counting pattern in M(L) for some prime n. We have that ηL(Ad)
contains a non-trivial group for some d ≥ 1. Then ηL(Ad) contains an isomorphic
copy G = ({[u0], . . . , [un−1]}; ·) of the cyclic group Zn = ({0, . . . , n − 1};⊕) for
some prime n (so [ui] · [uj] = [ui⊕j ], where ⊕ is the addition modulo n, [u0] is
the unit of G and [u1] is a generator of G). Since [u0] �= [u1], there are y, z ∈ A∗

with yu0z ∈ L ↔ yu1z �∈ L; let e.g. yu0z ∈ L and yu1z �∈ L. Set si = [yui]
for each i ∈ {1, . . . , n}, x = yu0, u = u0 and v = u1. One easily checks that the
states s0 = ε, s1, . . . , sn and the words x, z, u, v form a balanced counting pattern
for M(L) (see Def. 8.4(1) and Fig. 1).

(4)→(2). It suffices to show that if a dfa A = (Q,A, δ, s0, F ) recognizing L
has a balanced counting pattern as in Figure 1 then m(L) has a similar balanced
counting pattern. W.l.o.g. we may assume that any state of A is reachable from
the initial state s0 (otherwise, just remove the unreachable states from A). Define
the equivalence relation ∼ on Q as follows: p ∼ q iff ∀u ∈ A∗(δ(p, u) ∈ F ↔
δ(q, u) ∈ F ). As is well-known [35], m(L) is isomorphic to the quotient-automaton
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Figure 5. The counting pattern with initial state s0.

Ã = (Q̃, A, δ̃, s̃0, F̃ ) of A. The states s̃0, s̃1, . . . s̃n and the same words x, z, u, v as
in Figure 1 form a balanced counting pattern for Ã. Hence, m(L) has a balanced
counting pattern. �
Remark. As is well-known (see e.g. [46] for details), for any dfa A it holds:
L(A) is aperiodic iff A has no counting pattern (see Fig. 5). Currently we do not
know whether the similar characterization holds for the quasi-aperiodic languages
and balanced counting patterns (as one might guess from the preceding theorem).
Nevertheless, already the characterization from the preceding theorem is useful.

Now we are able to characterize (uniformly on oracles) the regular languages L
such that Leafb(L)) ⊆ PH. The similar characterization for the unbalanced leaf
language definability and aperiodic languages is well-known [45].

Theorem 8.9. A regular language L is quasi-aperiodic iff Leafb(L)O ⊆ PHO for
all oracles O.

Proof. From left to right the proof is contained in the proof of Theorem 8.8,
(1)→(2). Conversely, let L be non-quasi-aperiodic. By the proof of Theorem
8.8, Mp ≤plt L for some prime p. By Theorem 8.2, Leafb(Mp)O ⊆ Leafb(L)O

for all O. It is known [45] that Leafb(Mp)O �⊆ PHO for some O. Therefore,
Leafb(L)O �⊆ PHO for some O. �
Corollary 8.10. The class of regular quasi-aperiodic languages is an ideal of
(R;≤plt).

We conclude this section by a result on an initial segment of the structure (R′;≤plt).
This result is implicit in [12,13] (provided we use Th. 8.5 and some known facts on
the oracle separations). Nevertheless, we present a more direct proof because its
ideas are also used in some proofs below. Let (P ;≤) be an upper semilattice with
a least element 0. Recall that an atom of P is a minimal non-zero element of P .
A semilattice is called atomic if below every non-zero element there is an atom.

Theorem 8.11. The semilattice (R′;≤plt) is atomic with infinitely many atoms.
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Proof. Let E ⊆ A+ be the language of words having at least one letter distinct
from a fixed letter a ∈ A. Obviously, E ≡plt 0∗1(0 ∪ 1)∗. For any prime p,
let Mp ⊆ A+ consist of all words such that the number of occurrences of letters
distinct from a is divided by p. We claim that the languages E,E,Mp (p prime)
define exactly the atoms of (R′;≤plt), i.e.:

(1) E,E,Mp are pairwise plt-incomparable;
(2) for any L ∈ R′ of non-smallest plt-degree, at least one of E,E,Mp is

plt-reducible to L.
The assertion (1) follows from Theorem 8.2 and the well-known oracle separations
(alternatively, it may be observed from the definition of plt-reducibility).

(2) Let L ∈ R′ be of non-smallest degree. By Theorem 8 and Corollary 18
in [13], L �≤plt E or L �≤plt E. We consider only the first case, the second being
dual. By Theorem 8.5, the minimal automaton A of L contains a balanced coNP-
pattern, or a balanced co1NP-pattern, or a balanced counting pattern.

In the case of balanced coNP-pattern as in Figure 3, consider the plt-function
f(y) = xh(y)z, where h : A+ → A+ is the length-multiplying homomorphism
satisfying h(a) = u and h(b) = v for all b ∈ A \ {a}. By the examples of plt-
functions at the beginning of this section, h is a plt-function, hence E ≤plt L.

In the case of balanced co1NP-pattern, we similarly get 0∗10∗ = f−1(L). Since
E ≤plt 0∗10∗, E ≤plt L.

In the case of balanced counting pattern, let M ′
n ⊆ {0, 1}+ be the set of words

with #1(w) ≡ 0 (mod n). By the proof of Theorem 8.8, M ′
p ≤plt L for some

prime p. Obviously, Mp ≡plt M
′
p. Therefore, Mp ≤plt L. �

Corollary 8.12. Δτ
1 coincides with the class of regular plt-decidable languages.

Proof. According to [12,13], a regular language L is plt-decidable iff L ≤plt E and
L ≤plt E. By the proof of Theorem 8.6 this is equivalent to L ∈ Δτ

1 . �

Since there are non-regular sets plt-reducible to 0∗1(0∪1)∗ [12,45], plt-reducibility
does not fit the introduced hierarchies. In the next two sections we consider
reducibilities which behave better in this respect.

9. Quantifier-free reducibilities

In [39] the reducibility by quantifier-free formulas of the signature σ was intro-
duced and studied. Here we generalize notions and results of [39] to the signature
τd for every fixed d > 0 and present some new results.

A qfτd-interpretation I over alphabets A = {a, . . .} and B = {b, . . .} is given
by a tuple

(φU (x̄), φ≤(x̄, ȳ), φ⊥(x̄), φ	(x̄), φS(x̄, ȳ), φb(x̄), . . . , φ0
d(x̄), . . . , φd−1

d (x̄))

where x̄ = (x1, . . . , xn) and ȳ = (y1, . . . , yn) are sequences of different variables of
the same length n > 0 (n is fixed in advance) and φU (x̄), . . . , φ0

d(x̄), . . . , φd−1
d (x̄)
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are quantifier-free formulas of τd,A with the following properties. Let u = u0 · · ·ul
be any word over A of length |u| = l + 1. Then the set T = {x̄ ∈ {0, . . . , l}n |
u |= φU (x̄)} should be non-empty and the formulas φ≤(x̄, ȳ), φ⊥(x̄), φ	(x̄), φS(x̄,
ȳ)), φb(x̄), ..., φ0

d(x̄), . . . , φd−1
d (x̄) interpreted in u should define a model of CLOτ ′

dB

with the universe T (the formulas φ⊥(x̄), φ	(x̄) should be true exactly on the first
and the last element, respectively). Since the finite models of CLOτ ′

dB are in
a bijective correspondence with the elements of B+, any qfτd-interpretation I
induces a function u �→ uI from A+ into B+.

Remark. The definition of the function u �→ uI above is not completely for-
mal, hence one might ask which tuples I really define such a function. One
such condition well-known from logic (see e.g. [31]) is sufficient for our paper
and looks as follows. Given a tuple I as above, relate to any formula ψ of sig-
nature τ ′d,B the formula ψI of signature τ ′d,A (called I-translation of ψ) in the
natural way, replacing the signature predicates and constant symbols by the cor-
responding formulas from I on the universe defined by φU (x̄) (e.g. the translation
of ∀x(x ≤ x) and ∀x(⊥ ≤ x) look like ∀x̄(φU (x̄) → φ≤(x̄, x̄)) and ∀x̄, ȳ(φU (x̄) ∧
φU (ȳ)∧φ⊥(ȳ) → φ≤(ȳ, x̄)), respectively). As is well-known and easy to see, if the
sentences ∃x̄φU (x̄), ∃x̄!φ⊥(x̄), ∃x̄!φ	(x̄) and the I-translations of all the axioms of
CLOτ ′

d

B are provable in CLOτ ′
d

A then u �→ uI is really a function from A+ into B+.
All interpretations considered in this paper will have this property, hence they will
define the functions u �→ uI .

Examples.
1. Let φU (x̄) be a valid formula, let φ≤(x̄, ȳ) be a formula that defines the

lexicographic ordering between x̄ and ȳ, let φ⊥(x̄), φ	(x̄), φS(x̄, ȳ), φ0
d(x̄), . . . , φd−1

d

be defined in the obvious way according to their intended interpretations in the
lexicographic ordering, and let φb(x̄), . . . be chosen arbitrarily but consistent with
the axioms CLOτd

B describing the properties of letters. Then uI is of length |u|n,
and the letters of the word uI are easily computed from the interpretation. Then
I is a qfτd-interpretation over A and B. Note that u �→ uI is a plt-function.

2. Let φU (x) be a valid formula with one variable x, let φ≤(x, y) be x ≥ y, let
φa(x) be Qa(x) for any a ∈ A, let φ⊥(x̄), φ	(x̄) be x = �, x = ⊥ respectively, and
let φS(x, y) be S(y, x). Let φ0

d(x̄), . . . , φd−1
d (x̄) be defined in the obvious way to

satisfy the corresponding axioms of CLOτd

A . Then we obtain a qfτd-interpretation
I over A and A such that uI is the reverse of the word u ∈ A+. Note that u �→ uI

is a plt-function.

3. Let u �→ pu be the function on A+ which adds a fixed prefix p ∈ A∗ to a
word u. Is there a qfτd-interpretation I over A and A such that uI = pu for any
u? For p = ε the answer is of course positive, otherwise it is negative (since any
qfτd-interpretation sends words of length 1 to words of length 1). But it is easy
to see that there is a qfτd-interpretation I over A and A such that uI = pu for
each u ∈ A≥2. The same of course applies to the operation of adding a suffix to a
word.
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4. For any d-length-multiplying semigroup morphism h : A+ → B+ (which
means that h has the property ∀a, b ∈ A(|h(a)| ≡ |h(b)| (mod d))) there is a qfτd-
interpretation I over A and B such that uI = h(u) for almost all u ∈ A+ (i.e. for
all but finitely many words). In general, u �→ uI is not a plt-function.

Definition 9.1.

• A function f : A+ → B+ is called a qfτd-function if there is a qfτd-
interpretation I over A and B such that uI = f(u) for almost all u ∈ A+.

• We say that L ⊆ A+ is qfτd-reducible to K ⊆ B+ (in symbols L ≤qfτd K)
if L = f−1(K) for some qfτd-function f : A+ → B+.

The next theorem generalizes in a straightforward way the corresponding facts
from [38,39] obtained there for the case of qfσ-reducibility.

Theorem 9.2.

(1) The relation ≤qfτd is reflexive and transitive.
(2) {∅} and {A+} are two distinct minimal elements of the degree structure

(P (A+);≤qfτd) which are below any other element.
(3) The structure (P (A+);≤qfτd) is an upper semilattice.
(4) The structure (P ′(A+);≤qfτd) is a distributive upper semilattice with a

least element which consists exactly of the non-trivial Δτd
1 -languages.

(5) For all n ≥ 1 the classes
⋃
n Στdn , R, FO + MOD(P) (P is any set of

positive integers containing d) are ideals of (P (A+);≤qfτd).
(6) The classes Στdn ,Π

τd
n , as well as all levels of the difference hierarchy over

Στdn , are principal ideals of (P (A+);≤qfτd).
(7) Let Dn be a qfτd-complete set in the n-th level of the difference hierarchy

over Στd1 . Then Dn⊕Dn is the infimum of sets Dn+1, Dn+1 under ≤qfτd.

Proof. (sketch). The items (1)–(5) are checked in the same way as the correspond-
ing assertions in [38,39].

In the proof of (6) for Στdn in the alphabet-dependent mode, we take again
the set Hn from the proof of Theorem 8.6(1) and note that the function f from
the proof of Lemma 3.1 in [39] is a qfτd-function. For the alphabet-independent
version we use an encoding h like that in the proof of Theorem 8.6(1) but with
the additional requirement that h is d-length-multiplying (this requirement is also
satisfied in an obvious way). For the levels of the DH, similar tricks apply.

The proof of the item (7) makes use of Theorem 7.3 and Proposition 4.4 and is
similar to the corresponding proof in [39]. �

Next we state a “parameterized” version of Theorem 8.8. For any fixed d > 0,
by a d-balanced counting pattern for a dfa A we mean a counting pattern as in
Figure 5 but with the additional requirement |v| ≡ 0 (mod d). It is easy to see
that if A has such a d-balanced counting pattern then it also has a pattern ob-
tained from Definition 8.4(1) by replacing the equality |u| = |v| on the equivalence
|u| ≡ |v| ≡ 0 (mod d) (to observe this, take u = vn). Note that the 1-counting
pattern coincides with the counting pattern.
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Theorem 9.3. For every regular language L the following conditions are
equivalent:

(1) L is FOτd
-axiomatizable.

(2) Every finite automaton recognizing L has no d-balanced counting patterns.
(3) The automaton M(L) has no d-balanced counting patterns.
(4) The minimal automaton m(L) of L has no d-balanced counting patterns.

Proof. is almost the same as that of Theorem 8.8, only now, in the proof of the
implication (3) → (1), we have |ui| ≡ 0 (mod d) for all i ≤ n. This guarantees
that the resulting counting pattern will be d-balanced. �

Remark. Results in [10,46] imply the following improvement of the previous
result: for any dfa A, L(A) is FOτd

-axiomatizable iff A does not have d-balanced
counting patterns.

In [38] some relationships between plt- and qfσ-reducibilities were established.
These results also generalize to the signatures τd. To see this, we recall definition
of the so called languages of finite counting type (cf. [6,15,16]). For all k ≥ 1 and
V ⊆ ωk we define the language

L(V ) = {x ∈ A+
k | (#1(x), . . . ,#k(x)) ∈ V }, Ak = {0, 1, . . . , k},

where #i(x) is the number of occurrences of i in x. Such languages are called
languages of counting type. The set V and the language L(V ) are said to be of
finite counting type iff there exists an m ≥ 0 such that

(n1, . . . , nk) ∈ V ↔ (min(n1,m), . . . ,min(nk,m)) ∈ V.

It is obvious that the languages of finite counting type are aperiodic, in fact they
are in BC(Σρ1).

Proposition 9.4.

(1) If L ≤qfτd M and M is of counting type then L ≤plt M .
(2) If L ≤qfσ M , L ⊆ A+, and M = L(V ) ⊆ A+

k is of counting type then
L ≤qfτd M .

(3) If both L and M are of finite counting type then L ≤qfσ M iff L ≤qfτd M
iff L ≤plt M .

(4) Within the class Στd1 (2) of differences of Στd1 -sets there are infinitely many
languages modulo ≡qfτd.

Proof.
(1) Is proved exactly as Theorem 5.3 in [39], only now the interpretation I from

that proof is a qfτd-interpretation.
(2) Let L ≤qfσ M via the qfσ-interpretation

J = (ψU (x̄), ψ≤(x̄, ȳ), ψ0(x̄), . . . , ψk(x̄), ψ⊥(x̄), ψ	(x̄), ψS(x̄, ȳ)), x̄ = (x1, . . . , xn),
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over A and Ak. Define a qfτd-interpretation

I = (φU (x̄), φ≤(x̄, ȳ), φ⊥(x̄), φ	(x̄), φS(x̄, ȳ), φ0(x̄), . . . , φk(x̄), φ0
d(x̄), . . . , φd−1

d (x̄))

over A and Ak (with the same n) exactly as in Example 1 at the beginning of
this section where φ0(x̄) is ¬ψU (x̄)∨ψ0(x̄) and φi(x̄) is ψU (x̄)∧ψi(x̄) for each i ∈
{1, . . . , k}. Then #(uI) = #(uJ ) for all u ∈ A+ where #(x) = (#1(x), . . . ,#k(x)).
Therefore, for almost all x ∈ A+ we have

x ∈ L↔ xJ ∈M ↔ #(xJ ) ∈ V ↔ #(xI) ∈ V ↔ xI ∈M

which means L ≤qfτd M .

(3) Since L ≤plt M implies L ≤qfσ M by Theorem 5.4 in [39], the assertion follows
from (1) and (2).

(4) Follows from (2) and Corollary 6.2 in [39]. �

Next we want to establish “parameterized” versions of Theorems 8.5 and 8.11.
The notions of d-balanced coUP-, coNP- and co1NP-patterns are obtained from
the corresponding notions in Definition 8.4 by replacing the equality |u| = |v| on
the equivalence |u| ≡ |v| ≡ 0 (mod d).

Theorem 9.5. Let L be a regular language and A the minimal automaton recog-
nizing L. The following conditions are equivalent:

(1) L ≤qfτd 0∗1(0 ∪ 1)∗;
(2) A does not have d-balanced coUP-patterns;
(3) A does not have d-balanced coNP-, co1NP- and counting patterns;
(4) L is a finite union of languages of the form w0(Ad)∗w1 · · · (Ad)∗wn, where

n ≥ 0 and wi ∈ A∗.

Proof. is obtained by repeating (with some obvious modifications) of the corre-
sponding proofs of Theorem 8 and Corollary 11 in [13] for the balanced case. Note
that for d = 1 we obtain the corresponding result from [2]. �

Corollary 9.6. Στd1 is the class of finite unions of languages w0(Ad)∗w1 · · ·
(Ad)∗wn, where n ≥ 0 and wi ∈ A+.

Proof. The inclusion from right to left is obvious. The opposite inclusion follows
from the last theorem and the fact that 0∗1(0∪ 1)∗ is qfτd-complete in Στd1 by the
proof of Theorem 9.2(6). �

Remark. By [10], for any d ≥ 1 the class of d-quasi-aperiodic languages coincides
with the closure of the class of finite languages and the language (Ad)∗ under the
Boolean operations and concatenation. We guess that the classes Στdn ,BC(Στdn )
may be characterized in terms of regular expressions in the similar way to the
well-known characterization of Σσn,BC(Σσn) in [40] and of of Σρn,BC(Σρn) in [23].
Corollary 9.6 provides such a characterization for n = 1.

Next we prove an analog of Theorem 8.11.
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Figure 6. The principal ideal of (P (A+);≤qfσ) generated by U ⊕ U .

Theorem 9.7. The semilattice (R′;≤qfτd) is atomic with infinitely many atoms.

Proof. We claim that the languages E,E,Mp (p prime) from the proof of Theo-
rem 8.11 define exactly the atoms of (R′;≤qfτd), i.e.:

(1) E,E,Mp are pairwise qfτd-incomparable,
(2) for any L ∈ R\Δτd

1 , at least one of the sets E,E,Mp is qfτd-reducible to L.

(1) The incomparability of E and E follows from the fact that E is qfτd-
complete in Στd1 and Στd

1 �= Πτd
1 . Since Mp is not a quasi-aperiodic language

(see [35]), we haveMp �≤qfτd E. Suppose that E ≤qfτd Mp. Since Mp is of counting
type, E ≤plt Mp, contradicting to the proof of Theorem 8.11. Therefore, E and
Mp are incomparable. A similar proof shows that E and Mp are incomparable. It
remains to check that Mp �≤qfτd Mq for p �= q. Suppose Mp ≤qfτd Mq. Since the
language Mq is of counting type, Mp ≤plt Mq by Proposition 9.4(1), contradicting
to Theorem 8.11.

With Theorem 9.5 at hand, the assertion (2) is proved in the same way as the
corresponding assertion in the proof of Theorem 8.11 but with the d-balanced pat-
terns instead of the balanced patterns. One has only to observe that the function g
from the proof of Theorem 8.8 is now a qfτd-function because the homomorphism
h is d-length-multiplying (see Exs. 3 and 4 at the beginning of this section). �

From distributivity of the semilattice (R′;≤qfτd) we immediately obtain the
following result about an initial segment.

Corollary 9.8. The lattice (Fin;⊆) of all finite subsets of ω is isomorphic to an
ideal of (R′;≤qfτd).
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We note that the result from [38,39] on the principal ideal of (P (A+);≤qfσ)
generated by the set U ⊕ U where U = 0∗10∗, is true also for the structure
(P (A+);≤qfτd) for each d ≥ 1 (this follows from Prop. 9.4 because all the languages
defining the principal ideal are of finite counting type). This principal ideal is
shown in Figure 6 where u is the degree of U , d0 is the degree of ∅, d1 is the degree
of 0∗1(0 ∪ 1)∗ and c̄ denotes the dual of a degree c.

Remark. Note that all results about the structure of qfτa-degrees above are
obtained by using some known technique for the plt-reducibility and the languages
of finite counting type. We would like to see methods specially designed for the
investigation of the qfτa-reducibility.

The reader might wonder about the relationships between the qfτd-reducibilities
for different d. The first impression could be that there are some dependencies
(e.g. one could expect that if d is a multiple of e (in symbols, e | d) then ≤qfτe

implies ≤qfτd). But actually this is not the case.

Theorem 9.9. For all distinct d, e > 0, qfτd-reducibility is incomparable with
qfτe-reducibility.

Proof. First we observe that (Ad)+ ∈ Στe
1 implies d | e. Indeed, by Corollary 9.6,

(Ad)+ is a finite union of languages L = w0(Ae)∗w1 · · · (Ae)∗wn, where n ≥ 0 and
wi ∈ A+. Since (Ad)+ is infinite, it contains at least one such a language L with
n > 0. Since w = w0 · · ·wn and w0a

ew1 · · ·wn, a ∈ A, are in L, d divides both |w|
and |w| + e. Therefore, d | e.

Now consider the following three cases.
Case 1. d � e and e � d.

By the observation above, (Ad)+ �∈ Στe
1 and (Ae)+ �∈ Στd

1 . Hence, (Ad)+ ≤qfτd

0∗1(0∪1)∗, (Ad)+ �≤qfτe 0∗1(0∪1)∗ and similarly with d, e interchanged. Therefore,
the qfτd- and qfτe-reducibilities are incomparable.

Case 2. e | d and d �= e.
In this case d � e hence, by case 1, qfτd-reducibility does not imply qfτe-

reducibility. It remains to check that qfτe-reducibility does not imply qfτd-
reducibility. It suffices to show that Mc ≤qfτe (Ad)+ but Mc �≤qfτd (Ad)+ where
c = d/e and A = {0, 1}. Suppose Mc ≤qfτd

(Ad)+. Since (Ad)+ ∈ Δτd
1 , Mc ∈ Δτd

1

and hence Mc is quasi-aperiodic. A contradiction.
It remains to show that Mc ≤qfτe (Ad)+. Let h : {0, 1}+ → {0, 1}+ be the

homomorphism satisfying h(0) = 0d and h(1) = 1e. Then

#1(h(w)) = e · #1(w) and |h(w)| ≡ #1h(w) ≡ e · #1(w) (mod d).

Thus,
w ∈Mc ↔ #1(w) ≡ 0 (mod c) ↔ |h(w)| ≡ 0 (mod d).

Since e | h(w) for each w ∈ A+, h is a qfτe-function (see Ex. 4 at the beginning
of this section) and therefore Mc ≤qfτe (Ad)+.
The remaining case (d | e and d �= e) is symmetric with case 2. �
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10. A reducibility for the τ-hierarchy

We have seen that the qfτd-reducibility fits the τd-hierarchy. Is there a re-
ducibility that fits the τ -hierarchy? In this section we find such a reducibility.

Definition 10.1. We say that a language L is τ -reducible to a language K (in
symbols L ≤τ K), if there exists c > 0 such that L ≤qfτd K for all multiples d
of c.

Analogs of some results of the previous sections hold true for the τ -reducibility.
One of its nice properties is the following.

Theorem 10.2. The τ-reducibility fits the τ-hierarchy, i.e. every class Στn, n > 0,
is a principal ideal of (P (A+);≤τ ).
Proof. Let L ≤τ K ∈ Στn. Then there exist a, c > 0 such that K ∈ Στa

n and
L ≤qfτd K for all d with c | d. For the number e = a · d we have L ≤qfτe K hence,
by Proposition 3.1, L ∈ Στe

n ⊆ Στn. Therefore, Στn is an ideal of (P (A+);≤τ ).
It remains to find a τ -complete set in Στn. We again take the set Hn ∈ Σσn

from the proof of Theorem 8.6(1). As noticed in the proof of Theorem 9.2, Hn is
qfτd-complete in Στd

n for all d > 0. Let L ∈ Στn, then L ∈ Στc
n for some c > 0. By

Proposition 3.1, L ∈ Στd
n for all d with c | d. Thus, L ≤qfτd Hn for all d with c | d.

Therefore, L ≤τ Hn, as desired. �
Remark. A proof similar to the proof of Theorem 8.6(1) (with the use of slight
modifications of proofs from Sect. 3 of [39]) shows that for any alphabet every level
of the difference hierarchy over Στn is a principal ideal under the τ -reducibility.

We conclude this section with an analog of Theorem 9.7.

Theorem 10.3.
(1) The degree structure (R′;≤τ ) is a semilattice with a smallest element con-

sisting exactly of the nontrivial languages in Δτ
1 .

(2) The degree structure (R′;≤τ ) is atomic with infinitely many atoms.

Proof. The assertion (1) easily follows from the previous theorem and the fact
that 0∗1(0 ∪ 1)∗ is τ -complete in Στn. To prove (2), we show that the sets E,E
and Mp, p prime, from the proof of Theorem 8.11 again define exactly the atoms
of (R′;≤τ ). By the proof of Theorem 9.7, the sets E,E and Mp are pairwise
qfτd-incomparable for all d > 0. Thus, they are also τ -incomparable and are not
in Δτ

1 .
It remains to check that any L ∈ R′ \ Δτ

1 is above at least one of E,E,Mp

under τ -reducibility. We have L �∈ Δτd
1 for all d > 0.

Case 1. L is quasi-aperiodic.
By the proof of Theorem 9.7, E ≤qfτd L for all d or E ≤qfτd L for all d. Thus,
E ≤τ L or E ≤τ L.

Case 2. L is not quasi-aperiodic.
By the proof of Theorem 9.7, there is a prime p such that Mp ≤qfτd L for all d.
Thus, Mp ≤τ L. �
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Remark. Though the τ -reducibility has some nice properties, it does not seem
natural because it is apparently less constructive than the qfτd-reducibilities.
Namely, the qfτd-reducibility on the regular sets is computably enumerable while
the τ -reducibility is, as an obvious computation shows, only in the level Σ0

3 of
the arithmetical hierarchy. We know neither the exact estimations of the rela-
tions ≤qfτd and ≤τ on R in the arithmetical hierarchy nor a more constructive
reducibility that fits the τ -hierarchy.

11. First order reducibilities

Here we briefly discuss some weaker logical reducibilities, namely the reducibili-
ties ≤foτd by first-order formulas of signature τd. Definition of the FOτd

-reducibility
≤foτd is the same as that of ≤qfτd, only now the interpretation I consists of first-
order formulas of τd. The following result is straightforward.

Theorem 11.1.
(1) The relation ≤foτd is reflexive and transitive.
(2) {∅} and {A+} are two distinct minimal elements of (P (A+);≤foτd) which

are below any other element.
(3) The structure (P (A+);≤foτd) is an upper semilattice.
(4) The classes R, FO+MOD(P) (P is any set of positive integers containing

d) are ideals of (P (A+);≤foτd).
(5) The structures (P ′(A+);≤foτd) and (R′;≤foτd) are distributive upper semi-

lattices with the least element consisting exactly of the non-trivial FOτd
-

axiomatizable languages.

The next theorem is an analog of Theorems 9.7 and 8.11.

Theorem 11.2. The semilattice (R′;≤foτd) is atomic with infinitely many atoms.

Proof. We claim that the sets Mp (p prime) from the proof of Theorem 8.11 define
exactly the atoms of (R′;≤foτd), i.e.:

(1) Mp are pairwise foτd-incomparable;
(2) for any regular non-FOτd

-axiomatizable language L, at least one of Mp is
foτd-reducible to L.

To prove (1), suppose that Mq ≤foτd Mp for some q �= p. Since Mp ∈ (FO +
MOD)(p) and (FO + MOD)(p) is an ideal of (P (A+);≤foτd), Mq ∈ (FO +
MOD)(p). This contradicts to Theorem VII.2.1 in [35].

(2) Let L be regular and non-FOτd
-axiomatizable. By Theorem 9.5 and the

proof of Theorem 9.7, Mp ≤qfτd L for some prime p. Therefore, Mp ≤foτd L. �

Corollary 11.3. The lattice (Fin;⊆) is isomorphic to an ideal of (R′;≤foτd).

Remarks.
1. It would be interesting to have more information on structures like (R;≤foσ )

or (FOτ ;≤foσ
) which are the structures of degrees of non-aperiodicity of the cor-

responding classes of languages.
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2. Another natural reducibility notion that might deserve attention is the foτ -
reducibility defined by: L ≤foτ M iff L ≤foτd M for some d ≥ 1. Obviously, ≤foτ

is a preorder, hence (R;≤foτ ) is the structure of degrees of non-quasi-aperiodicity
of regular languages.

12. Other reducibilities and open questions

There are also other natural reducibilities on the regular sets. E.g., let ≤fom

be defined in the same way as ≤foτd but this time the interpretation I consists of
(FO+MOD)-formulas. One can easily establish for this reducibility the analog of
Theorem 11.1. In particular, the smallest degree in (R′;≤fom) consists exactly of
the non-trivial regular languages with solvable syntactic monoid. Therefore, there
exist at least two distinct (modulo ≡fom) non-trivial regular languages. We do not
know whether there exist three non-trivial regular languages which are pairwise
distinct modulo ≡fom.

We do not also currently know whether there exist regular languages which are
complete under the “logical” reducibilities considered above.

Analogs of the open questions from [38] for the qfτd-reducibilities seem also
natural.

One could consider also the reducibilities by functions computable by natural
classes of finite transducers. Such reducibilities were successfully applied for the
classification of some classes of regular ω-languages [30,44].

In this paper we used mainly the logical approach to regular languages. As
is well-known, there is an equally important and popular algebraic approach (see
e.g. [9,21,24]) based on the close relationships of the so called varieties of languages
to the varieties of finite semigroups. In [36] this approach was extended to the
so called C-varieties where C is a category of word morphisms. The concept of
C-variety (and its possible versions like positive C-varieties in the spirit of [22]
or C-families in the spirit of [27]) seem to be relevant to the classes of languages
discussed above. E.g., for any n ≥ 1 the class BC(Στn) (over different alphabets)
forms a C-variety where C is the category of length-multiplying homomorphisms
and the class BC(Στdn ) (over different alphabets) forms a C-variety where C is the
category of d-length-multiplying homomorphisms. May be, it makes sense to look
at these relationships in a systematic way.
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