Let
Mots-clés : critical exponent, binary
@article{ITA_2009__43_1_41_0, author = {Krieger, Dalia}, title = {On critical exponents in fixed points of $k$-uniform binary morphisms}, journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications}, pages = {41--68}, publisher = {EDP-Sciences}, volume = {43}, number = {1}, year = {2009}, doi = {10.1051/ita:2007042}, mrnumber = {2483444}, zbl = {1170.68034}, language = {en}, url = {https://www.numdam.org/articles/10.1051/ita:2007042/} }
TY - JOUR AU - Krieger, Dalia TI - On critical exponents in fixed points of $k$-uniform binary morphisms JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications PY - 2009 SP - 41 EP - 68 VL - 43 IS - 1 PB - EDP-Sciences UR - https://www.numdam.org/articles/10.1051/ita:2007042/ DO - 10.1051/ita:2007042 LA - en ID - ITA_2009__43_1_41_0 ER -
%0 Journal Article %A Krieger, Dalia %T On critical exponents in fixed points of $k$-uniform binary morphisms %J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications %D 2009 %P 41-68 %V 43 %N 1 %I EDP-Sciences %U https://www.numdam.org/articles/10.1051/ita:2007042/ %R 10.1051/ita:2007042 %G en %F ITA_2009__43_1_41_0
Krieger, Dalia. On critical exponents in fixed points of $k$-uniform binary morphisms. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 43 (2009) no. 1, pp. 41-68. doi : 10.1051/ita:2007042. https://www.numdam.org/articles/10.1051/ita:2007042/
[1] Automatic Sequences: Theory, Applications, Generalizations. Cambridge University Press (2003). | MR | Zbl
and ,[2] Axel Thue's Papers on Repetitions in Words: A Translation. Publications du Laboratoire de Combinatoire et d'Informatique Mathématique 20, Université du Québec à Montréal (1995).
,[3] On the Index of Sturmian Words, in Jewels are forever. Springer, Berlin (1999) 287-294. | MR | Zbl
,[4] Some properties of the factors of Sturmian sequences. Theoret. Comput. Sci. 304 (2003) 365-385. | MR | Zbl
and ,[5] Special factors, periodicity, and an application to Sturmian words. Acta Informatica 36 (2000) 983-1006. | MR | Zbl
and ,[6] An algorithm to test if a given circular HD0L-language avoids a pattern, in IFIP World Computer Congress'94 1 (1994) 459-464. | MR
,[7] The index of Sturmian sequences. Eur. J. Combin. 23 (2002) 23-29. | MR | Zbl
and ,[8] Repetition of subwords in D0L languages. Inform. Control 59 (1983) 13-35. | MR | Zbl
and ,[9] Uniqueness theorems for periodic functions. Proc. Amer. Math. Soc. 16 (1965) 109-114. | MR | Zbl
and ,[10] On uniform DOL words. STACS'98 1373 (1998) 544-554. | MR
,[11] Fractional powers in Sturmian words. Theoret. Comput. Sci. 255 (2001) 363-376. | MR | Zbl
and ,[12] On combinatorial properties of the Arshon sequence. Discrete Appl. Math. 114 (2001) 155-169. | MR | Zbl
and ,[13] Repetitiveness of languages generated by morphisms. Theoret. Comput. Sci. 240 (2000) 337-378. | MR | Zbl
and ,[14] On critical exponents in fixed points of binary k-uniform morphisms, in STACS 2006: 23rd Annual Symposium on Theoretical Aspects of Computer Science, edited by B. Durand and W. Thomas. Lect. Notes. Comput. Sci. 3884 (2006) 104-114. | MR | Zbl
,[15] On critical exponents in fixed points of non-erasing morphisms. Theoret. Comput. Sci. 376 (2007) 70-88. | MR | Zbl
,[16] Algebraic Combinatorics on Words, Vol. 90 of Encyclopedia of Mathematics and Its Applications. Cambridge University Press (2002). | MR | Zbl
,
[17] The equation
[18] Infinite words with linear subword complexity. Theoret. Comput. Sci. 65 (1989) 221-242. | MR | Zbl
,[19] Repetitions in the Fibonacci infinite word. RAIRO-Theor. Inf. Appl. 26 (1992) 199-204. | EuDML | Numdam | MR | Zbl
and ,
[20] If a D0L language is
[21] Puissances de mots et reconnaissabilité des points fixes d'une substitution. Theoret. Comput. Sci. 99 (1992) 327-334. | MR | Zbl
,[22] Über die gegenseitige Lage gleicher Teile gewisser Zeichenreihen. Norske vid. Selsk. Skr. Mat. Nat. Kl. 1 (1912) 1-67. | JFM
,[23] Sturmian Words and Words with Critical Exponent. Theoret. Comput. Sci. 242 (2000) 283-300. | MR | Zbl
,Cité par Sources :