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LEAST PERIODS OF FACTORS OF INFINITE WORDS * **

JAMES D. CURRIE! AND KALLE SAARI?

Abstract. We show that any positive integer is the least period of a
factor of the Thue-Morse word. We also characterize the set of least
periods of factors of a Sturmian word. In particular, the corresponding
set for the Fibonacci word is the set of Fibonacci numbers. As a by-
product of our results, we give several new proofs and tightenings of
well-known properties of Sturmian words.

Mathematics Subject Classification. 68R15.

1. INTRODUCTION

The combinatorial study of infinite words often entails considering periods of
factors. For example, showing that an infinite word has a bounded critical expo-
nent requires showing, perhaps implicitly, that the ratio between a factor and its
least period is bounded. Therefore it seems natural to study directly the set of
least periods of factors of an infinite word; we call this set the period set of an
infinite word. To our knowledge, this is a novel area of inquiry into the periodicity
of finite and infinite words [11], Chapter 8.

This paper initiates the study of the period set of infinite words. It is easy to
see that the period set of an infinite word is finite if and only if the word is purely
periodic. Therefore infinite aperiodic words give rise to infinite period sets, and
it is natural to ask what kind of restrictions period sets have to obey. It is plain
that the period set of an aperiodic infinite word must include periods 1, 2, and 3.
But already 4 is avoidable, as is witnessed by the Fibonacci word, see Corollary 4.
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In this paper we will characterize the period sets of the Thue-Morse word and of
all Sturmian words. These much studied words have applications and connections
to several fields, such as algebra, number theory, ergodic theory, crystallography,
computer graphics, and text algorithms; see [1] and [11], Chapter 2 and the refer-
ences therein. The characterizations of the period sets show that the gaps in the
period set of the Fibonacci word grow exponentially, while the gaps in the period
set of the Thue-Morse word have the lowest possible growth an aperiodic infinite
word can have. As a by-product of our work, we give new proofs, tightenings, and
generalizations of some known properties of Sturmian words.

An outline of this paper is as follows: in Section 2, we set the terminology used
in the paper, and mention some basic results. In Section 3, we show that any
positive integer is the least period of some factor of the Thue-Morse word. In
Section 4, we characterize the set of least periods of a Sturmian word. Finally,
in Section 5, we give four applications of our results, including a tightening of a
result by de Luca and De Luca [7] and a characterization of the least periods of
standard words.

2. PRELIMINARIES

In this section we briefly define the terminology used in this work. For a state-
ment without a citation in this section, we refer to [4,10,11].

We will be dealing with words over the alphabet {0,1}. The set of all such
words, including the empty word, is denoted by {0, 1}*.

Let w = ajaz---a, be a word with a; € {0,1} and n > 1. The length of w is
the integer n, and is denoted by |w|. We denote the number of occurrences of a
letter @ € {0,1} in w by |wl,.

A factor of w is a word of the form v = a;a;41 - ax with 1 <i <k <n. It is
a prefiz if ¢ = 1 and a suffix if K = n. In each case, we add the attribute proper if
w # u.

Let 0 < i < |w|. The word a;4+1a;42ai+3 - anaiaz---a; is called a conjugate
of w, and is denoted by o (w).

We write w’ = a1as---a,_1 and ~w = asasz---a,. The reverse of w is the
word anan_1--- a1, and we denote it by w’. We denote by @ the word obtained
from w by exchanging 0’s and 1’s; it is called the complement of w.

A period of the word w is an integer p > 1 such that, for alli =1,2,...,n—p,
we have a; = a;1p. The word w is said to be a rational power of the word
u = ajaz---ap, and u is called a word period of w. If no period p divides the
length of w, then w is termed primitive. Primitivity of a word implies that all
conjugates of the word are distinct.

In this work, we are interested in the least period of a word w, which we denote
by p(w). The word w is called unbordered if p(w) = |w|. Finally, the prefix of w
of length p(w) is called the fractional root of w.

Let the words in {0, 1}* be ordered by the lexicographic order induced by the
relation 0 < 1. If w is a primitive word, then its least conjugate with respect to
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the lexicographic order is called a Lyndon word. If |w| > 1, we get a different
Lyndon word by using the lexicographic order induced by the relation 1 < 0. One
of the basic properties of a Lyndon word is that it is unbordered.

Let x be an infinite word, that is, a mapping from the nonnegative integers to
a finite alphabet. The notion of a factor is extended naturally to infinite words
with the agreement that a factor is always a finite word. The set of finite factors
of x is denoted by F(x). We call the set of least periods of all factors of x the
period set of x.

A morphism is a mapping h: {0,1}* — {0,1}* with the property that h(uv) =
h(u)h(v) for every u,v € {0,1}*. The domain of h extends to infinite words such
that if

X =ajag - -ap- -, then h(x)=h(ar)h(az) - hla,)---
The Thue-Morse word, denoted by t, is the infinite word starting with the letter 0
that is a fixed point of the morphism u: {0,1}* — {0,1}* determined by u: 0 —
01,1 + 10. If u is a factor of t, then so are @ and u’. The Thue-Morse word is
overlap-free, which means that t does not have a factor of the form uua, where u
is a nonempty word and a is the first letter of w.

A Sturmian word is an infinite word x over {0, 1} such that, for every integer
n > 1, the word x has precisely n + 1 different factors of length n. The frequency
of letters 0 and 1 in x exists; the frequency of 1 is called the slope of x, and we
denote it by 6. The slope 6 is an irrational number, and therefore it has an infinite
continued fraction expansion

9:[0,d1+1,d2,d3,...], (1)

where dq > 0 and d,, > 1 for n > 2.
Next we define words s,, corresponding to the expansion (1) as follows:

dn
s_1 =1, so =0, Sn = 83" 15n—2 (n>1).

Words that can be recursively defined as above are called standard. All standard
words are primitive. Furthermore, consecutive standard words s, and s, are
near-commutative in the following sense: if n > 1, then there exists a word p,,
such that

SnSn_1 = Pnad and Sn_1Sn = pnaa, (2)
where a € {0,1}. Therefore, for n > 2, we have

SpSm_1 = Sp_15m- (3)

Let us denote ¢, = |s,| for all n > —1.

The standard words corresponding to the slope 6 are related to x in the following
way. Since s, is a prefix of s,41 for all n > 1, there is a unique infinite word,
which we denote by c, such that s, is a prefix of ¢ for all n > 1. The word c is
called the characteristic word with slope 6. The sets of finite factors of x and c
coincide, that is, we have F'(c) = F(x).
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Since x has n + 1 factors of length n, it follows that there exist precisely one
factor u of length n such that both Ou and lu are factors of x. Such a factor is
called left special. A factor of x is left special if and only if it is a prefix of c.

The set of factors of x is closed under reversal, that is to say, if u € F(x), then
also uft € F(x).

Now we will adopt a notation from [13]. For each integer n > 1, there exists a
unique representation

n=d +dy+---+di—1+ 7, 1<5<d;.
With this representation, we denote
tn = s]_1sia. (4)

It is also useful to denote t_; =1 and tg = 0. Observe that t4,...;q, = sy, for all
n>1.

The following result by Berstel [2] is one of the key observations we need in
characterizing the period set of a Sturmian word.

Theorem 1 (Berstel). For n > 2, the longest prefiz of ¢ that is a rational power

n+1+15//

. d
of the word s, is sn 1

3. PERIODS OF FACTORS OF THE THUE-MORSE WORD

In this section we will show that every positive integer is the least period of
some factor of the Thue-Morse word. To do that, we need some auxiliary results.
Recall that 4 denotes the morphism given by p: 0 — 01,1 — 10.

Lemma 1. Let u be a factor of the Thue-Morse word t. Then u does not have
any odd period p such that p < |u| — 3.

Proof. Suppose that u has an odd period p with p < |u| — 3. We may suppose that
p > 3 because t does not contain 000 or 111. Then |u| > 7. Let v be the prefix of
u of (odd) length p + 4.

Observe that, since v is a factor of t, also v* and ¥ are factors of t. Therefore,
without loss of generality, replacing v by its reversal or complement or both if
necessary, write v = p(w)a = vov1vs - - - vp13, where v;, a € {0,1}, and vy = 0.

Since v has period p, we find that v, = vy = 0, so that v,_1v, = 10. Similarly,
Upt1 = v1 = 1, so that vpy1v,42 = 10. Thus v = vp12 = 0, whence vovz = 01.
This implies that v,43 = v3 = 1, and v contains the overlap vp_1VpUp41Vp42Vp43 =
10101, which is impossible because t is overlap-free. O

Recall that we denote by ~u, u’ and ~u’ the words obtained from u by deleting
respectively the first letter, the last letter, or the first and last letters.

Lemma 2. Let u = p(w), some w € {0,1}. Let v =~u'. Suppose that v has an
even period 2r < |v|. Then w has period .
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Proof. Write w = wowiws -+ - wg_1ws and v = vgv1v2 - - - V2g_1, SO that r < s. We
see that
V= WowW1W1WaW2 + +* Ws—1Ws—1 W

Since v has period 2r, we have W; = v9; = va; 49, = W;4, Whenever 0 < 2 + 2r <
|v] — 2, that is, 0 < i < s — 1 — r. Therefore,

w; = wiq, forall0<i<s—1—r.

Similarly, since v has period 2r, we have w; = vo;—1 = v2;—142, = W4+, Whenever
0<2i—142r<|v|—1,thatis, 1 <i<s—r. In total,

wW; = Wig, forall0<i<s—r. O

The claim in the lemma above does not hold if we allow |v| = 2r. Indeed, if
w = 01, then v = 11. Even though 2 is plainly a period of v, the word w certainly
does not have period 1.

Corollary 1. Let u = p(w), some w € {0,1}. Let v be obtained from u by
possibly deleting first or last or both letters; that is, let v be one of u, v, ~u, ~u/'.
Then v has period 2r < |u| — 2 if and only if w has period r.

Proof. Suppose that v has period 2r. Then ~u/' is a factor of v and has period 2r,
so that, by Lemma 2, w has period r.

If w has period r, then p(w) has period 2r since |p(0)] = |pu(1)] = 2. It follows
that the factor v of p(w) has period 2r. O

Lemma 3. Let r > 4 be a positive integer. Then the following statements hold:
(i) if r =4 (mod 6), then t has a factor u of the form uw = 00y11 with |u| = r
and p(u) = r;
(ii) ifr=0, 2,3, or 5 (mod 6), then t has a factor u of the form u = 00y101
with |u| = r and p(u) = r;
(iii) ¢f r =0, 1, or 3 (mod 6), then t has a factor u of the form u = 00y010
with |u] =7+ 1 and p(u) = r.
Proof. We prove this by induction. The item (i) with » = 4 is witnessed by the
factor 0011. The item (ii) with » = 5,6,8, or 9 is witnessed by factors

00101, 001101, 00101101, and 001100101.
The item (iii) with r = 6,7,9 is witnessed by factors
0011010, 00110010, and 0011010010.

Let us now assume that r > 10, and that the lemma is satisfied for all smaller
values of 7.

Case 1. r =0 (mod 6). First, let s = r/2. Then either s =0, or 3 (mod 6), and
s < r. By the minimality of » and the item (iii), there is a factor w of t of the form
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002010 having length s+ 1 and least period s. Let u =~u(w®). Then u is a factor
of t, it is of length r + 1, and it has the form u = 00y010, where y = 110u(z")1.

Evidently, v has period r. Corollary 1 implies that u has no even period shorter
than r = 2s. Writing u = upuius - - - 4, we see that ug # up_1, Uz # Uy, Uz 7# U,
showing that u does not have period r—1, r—2, or r— 3. By Lemma 1, u can have
no odd period, and therefore the least period of w is r, witnessing the item (iii).

Next, let v =~u(@W?)’. Then v is of length r, and thus has period r. Further-
more, v =~ (1012711)" has the form 00y101, where y = 110(2). It has no even
period shorter than r = 2s by Corollary 1. Writing v = vgvivs - - -v-_1, We see
that vy # vp—1, V1 # Vr_1, V9 # VUr_3, showing that v does not have period r — 1,
r—2,or r —3. By Lemma 1, v can have no odd period. Thus the least period of
v is r, witnessing the item (ii).

Case 2. 7 =3 (mod 6). First, let s = (r+3)/2. Then either s =0, or 3 (mod 6),
and s < r. Thus there is a factor w of t of the form 002101 having length s and
least period s. Let u =~pu(w’)’. Then u is a factor of t, it is of length r + 1, and
it is of the form u = 00y010, where y = 110u(2%).

Evidently, the word u has period r. Corollary 1 implies that it has no even
period strictly shorter than |u| = r+1 = 2s —2. Writing u = uoujus - - - u,, we see
that wg # w,—1, 1 # upr—1, ug # u,, showing that u does not have period r — 1,
r—2,or r—3. By Lemma 1, u can have no odd period less than r. Thus the least
period of w is 7, witnessing the item (iii).

Next, let s = (r + 1)/2. Then either s = 2, or 5 (mod 6). There is a factor
v of t of the form 002101 having length s and least period s. Let u =~pu(v®).
Then w is a factor of t, it is of length r, and it has the form u = 00y101, where
y = 110u(21)0.

Evidently, the word « has period |u| = r. Corollary 1 implies that it has no
even period strictly shorter than r» 4+ 1 = 2s. Writing v = uoujusg . .. u,—1, we see
that ug # ur—1, U1 # Up_1, Ug # Ur—3, showing that u does not have period r — 1,
r—2,or r—3. By Lemma 1, u can have no odd period less than r. Thus the least
period of w is r, witnessing the item (ii).

Case 3. r =1 (mod 6). Let s = (r + 3)/2. Then either s = 2, or 5 (mod 6),
and s < r. Thus there is a factor v of t of the form 002101 having length s and
least period s. Let u =~u(v?)’. As in the previous case, u is a factor of t, it is
of length r 4+ 1, has the form u = 00y010, and its least period equals r = |u| — 1,
witnessing the item (iii).

Case 4. r =4 (mod 6). Let s = r/2. Then either s = 2, or 5 (mod 6). There
is a factor v of t of the form 002101 having length s and least period s. The
word v = 002101 must be obtained by deleting the first and possibly last letter
of some word p(t), where ¢ is some factor of t. Let u denote a word of the form
u = 10012101 that is obtained from pu(t) by possibly deleting the last letter.

Next we will show that v has no even period less than s. To derive a contra-
diction, suppose that w has period 2k < s. Then by Corollary 1, the word ¢ has
period k. But then, again by Corollary 1, the word v has a period 2k < s, a
contradiction.
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Writing v = wouy - - - us, we see that uy # us, us # us, U3 # us—2, so that u
does not have period s — 1, s — 2, or s — 3. Therefore v has no odd period less
than s, and it follows that its least period is s.

We now let w =~p(u) = 00yll, where y = 10110p(2)100. Then w is of
length r. The same argument used before shows that w has no even period less
than r. Writing w = wows - - - wy,_1, wWe see that wy # wy_1, Wy # Wr_32, W1 #
wy_s, and so w has no odd period less than r either. Therefore the least period
of w is r, witnessing the item (i), as desired.

Case 5. r =2 (mod 6). Let s = r/2. Then we have two possibilities.

If s =1 (mod 6), then t has a factor w = 002010 of length s + 1, minimum
period s. Let v =~pu(@w?)’. Then v has form 00y101 with length 7 and least
period r, as can be seen as above.

If s = 4 (mod 6), then t has a factor of the form 00z11 having length s and
least period s. It follows that u = 100211 is a factor of t having length s 4+ 1 and
its least period is s. Let w =~p(u)’. Then w = 00y101, where y = 101u(z). As
in previous cases, the word w is of length r, and its least period is r, witnessing
the item (ii).

Case 6. r =5 (mod 6). Let s = (r +1)/2. Then either s = 0, or 3 (mod 6),
and s < r. Therefore, t has a factor of the form v = 002101 having length s
and least period s. It follows that u =~u(v®) has the form u = 00y101 where
y = 110u(2)0. As in previous cases, u is of the length 7, and the least period of
u is r, witnessing the item (ii). O

Remark 1. The previous lemma shows that the Thue-Morse word has an unbor-
dered factor for each length r # 1 (mod 6). It is readily verified that all factors
of length 7 are bordered. Since the factors of length 1 are trivially unbordered,
it is natural to ask, for which lengths r = 1 (mod 6) are all factors of length r
bordered. This question remains open.

We are ready for the main theorem of this section.

Theorem 2. For each integer n > 1, the Thue-Morse word has a factor of least
period n.

Proof. The least periods 1,2,3 are displayed by factors 0, 01, and 001. For integers
n > 4, appropriate factors exist according to Lemma 3. g

4. PERIODS OF FACTORS OF STURMIAN WORDS

In this section we will characterize the period sets of all Sturmian words, and
by doing so, we obtain a few older results on Sturmian words as a by-product in
the next section.

Let x be a Sturmian word with slope §. Denote the continued fraction expansion
of 6 by

9:[0,d1+1,d2,d3,...]. (5)
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Let (sp)n>—1 be the corresponding sequence of standard words, and let (¢, )m>—1
denote the corresponding auxiliary words defined in (4). Further, let ¢ denote the
characteristic sequence with slope 6. Observe that d; > 0 and d,, > 1 for all n > 2.
Since the period set of a sequence does not depend on the naming of letters, we
may assume that ¢ begins with 0. Therefore, we assume in the rest of this section
that dy > 1.

Lemma 4. For n >0, the word s2 is a factor of x. For m > dy, the word t2, is
a factor of x.

Proof. The word sfl’ff SnSn+1 18 a prefix of s,,+3, and therefore a factor of x. Since
n >0 (and d; > 1), the word s,, is a prefix of s,41. Consequently, s2 is a factor
of x.

If m = dy, then t2, = s? occurs in x. So, we may suppose that m > d;. Then
we have t,,, = s? sp,_1 for some integers n > 1 and 1 < i < d,41. Since S%H occurs
in x, we see that the word s;sn,lsz"“sn,l occurs in x. Since n > 1, the word
Sn—1 is a prefix of s,,, and hence it follows that the square of the word ¢,,, = s} 5,1
occurs in x. 0

Corollary 2. For m > —1, all conjugates of t,, are factors of x.

Proof. The claim is trivial if m equals —1 or 0. When 1 < m < d;, the claim is
witnessed by s% = 09%10%1. When m > dy, the word tfn occurs in x, and so the
claim obviously holds then as well. O

The words t,, clearly are standard, and hence primitive. Therefore all the
conjugates of t,, are distinct. Since all conjugates of t¢,, are factors of x, and x
has |tm,| + 1 factors of length |t,,|, it follows that x has precisely one factor of
length |t,,| that is not a conjugate of t,,. We call this factor the singular factor
of x corresponding to t,,'. With this definition, t_; = 1 is the singular factor
corresponding to tg = 0, and vice versa. We give the other singular factors in the
next lemma.

Lemma 5. Let m > 1, and let a denote the last letter of t,, = s;sn,l. The
singular factor corresponding to t,, equals at’ , and it is bordered with period qy,.

m’

Proof. First, observe that n > 0 and 1 < i < d,41. It is clear that s, 25,41 is a
prefix of ¢, and hence a factor of x. Since

d
Sn42Sntl = Syl sprti s

n—1, (6)
we see that the word si™ts, 1 is a factor of x.

First, suppose that n = 0. Then the word 0! occurs in x, and it clearly is the
singular factor corresponding to si s, 1 = 0°1. The claim holds for 0?1

ISingular factors for Sturmian words seem to have been introduced by Cao and Wen [3], but
only in cases that correspond to the words sp.
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Next, suppose that n = 1. Then
sitlsg = 0"11(0%1)"0,

and hence the word 1(0d11)1 occurs in x, and it clearly is the singular factor
corresponding to s} sg, satisfying the claim.

Finally, suppose that n > 2. Let us denote s,, = s/'ab and s,,—1 = s/, _,ba, where
ab € {01,10}. Equation (6) shows that the word w = bs! s’ _,b is a factor of x.
Also, w is not a conjugate of s, s,,_1 because |w|, = |s! s,—1]p + 1. Hence w is the
corresponding singular factor of ¢,,. Since b = @, we have w = at/,,. Furthermore,
the word w is bordered with period ¢, because

RN, _ " Nty o
w = bs;,s,_1b= (bsna) bs,,_1D,

and bs!!_b is a prefix of bs/ a. O

Lemma 6. Letn >0 and i > 1. Denote w; = 07 (s, 8,—1). Then w; has a period

{Qn if0<7<qn—2;
(= Dgn+ -1 if o <j<ign+qn1—2.

Furthermore, w; is unbordered if and only if j = ¢, —1 or j = ign +qn—1—1, and
then w;j is a Lyndon word.

Proof. The claim is readily verified for n = 0, so we may assume that n > 1.
First, suppose that 0 < j < g, —2. Then wj is a factor of the word z = s%sn_lsg.
If n = 1, then z clearly has a period ¢,. If n > 2, then Equation (3) implies
z = sitls! |, and we see that z has a period g,,. Therefore also w; has a period gy,.
Next, suppose that kg, < j < (k+1)g,, where 1 < k <4 — 1. This implies that
i > 2. Then wyj is a factor of the word

i—k

_ k .
Z =85, "Sn—18,5,-

We claim that z is a prefix of the word (s%’ksn,lsffl)s. Indeed, if n = 1,
verifying this is a straightforward computation. And if n > 2, the claim follows by
an application of Equation (3). Hence z, and consequently also w;, has a period
(i - 1)Qn + gn—1-

Finally, suppose that iq, < j < iqp + ¢n—1 — 2. This implies n > 2. Then
the word w; is a factor of 2 = s,_1s,s!/_;. By Equation (3), we can write
2= 8,185 1s,_15", and hence z, and also w;, have a period (i — 1)gn + ¢n—1.

Since s! s, 1 is a primitive word over a two-letter alphabet, it has at least
two conjugates that are Lyndon words, and therefore unbordered. We have seen
that w; is bordered in all other cases except possibly when j = ¢, —1 and j =

iqn + ¢n_1 — 1, so that the last claim of the lemma holds. O
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Lemma 7. A word w is an unbordered factor of x if and only if w =t_1, w = ty,
or w is one of the two Lyndon words that are conjugates of t,, for some m > 1.

Proof. According to Lemmas 5 and 6, the claim holds if |w| = [t,,| for some
m > —1. Hence we may suppose that |w| # |t,,| for all m > —1. We will show
that w is bordered.

First, observe that we have |w| > |tq,| = dy + 1 because |t;| = i + 1 for i =
0,1,...,d;. Furthermore, there exists an integer n > 1 such that either

In < |w| < @n + gn-1 or  ign+gn-1 < |w| < (t+1)gn + gn-1

for some 1 < ¢ < dp41. It follows that w is a proper prefix of some factor of x of
length iq, + ¢n—1 with 1 < i < d, 1 such that

|w] > max{ qn, (i — 1)gn + Gn-1 }- (7)

Denote this factor by z. Then z is either a conjugate of si s, _1, or the singular
factor corresponding to s’ s,_1. If z is the singular factor, then w is bordered
because z has a period ¢, and |w| > ¢,. Hence we may suppose that z is a
conjugate of t,, = s% s, 1.

If z is bordered, then according to Lemma 6, z has a period ¢, or a period
(¢ — 1)gn + gn—1. In either case, z has a period strictly less than |w|, and so w is
bordered.

If z is unbordered, Lemma 6 implies that either

z=0"Y(s"8,_1) or z=0""1(sl 5, 1). (8)

Now we have two possibilities regarding as to whether n =1 or n > 2.

Suppose first that n = 1. Then either z = 0(0%1)? or z = (10%1)%0. In the
first case, the inequality in (7) implies that w = 0(09)*~107 for some j > 1, so
that w is bordered. Similarly, in the second case we have w = (1091)=1107, where
1<j<dy. If i =1, the word w is a conjugate of ¢;, a contradiction. Therefore,
1 > 2, and w is bordered.

Suppose then that n > 2. Now, the word w is a factor of either

o 2(s!501) or ol 2(s! 5, 1). (9)

Since we have already proved that w is bordered if w is a factor of a bordered word
of length ig,, + gn—1, we only have to show that both words in (9) are bordered.
To do that, we only have to show that they are distinct from the words in (8).
There are four cases to consider; one of them is

o (sl s 1) = 0 (sl s, 1). (10)
Since s%sn_l is primitive, we get iq, +qn—1—2 = ¢, — 1, which implies that n < 1,

a contradiction. The remaining three cases are proved similarly; we omit details
here. 0
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The next result by de Luca and De Luca appears in the proof of [7], Theorem 10.
The original proof was obtained with a clever use of Duval extensions and a result
of Mignosi and Zamboni [12]. Here we give a different, more constructive, albeit
longer, proof.

Lemma 8 (de Luca, De Luca). The least period of a factor w of x equals the
length of a longest unbordered factor of w.

Proof. Let u denote a longest unbordered factor of w. The claim clearly holds if
u is a letter, so we may assume that |u| > 2. Clearly, p(w) > |u|. To show that w
has a period |u|, it suffices to show that all factors of length |u| of w are conjugates
of u.

To do that, suppose, contrary to what we want to show, that w has a factor z
of length |u| that is not a conjugate of u. Since the reversal of w is also a factor of
X, we may, possibly by replacing w by w®, assume that u occurs on the left of z
in w. Let v denote a prefix of w such that z is a suffix of v and u is a factor of v.

Since u is unbordered and |u| > 2, Lemma 7 implies that u is a conjugate of
ty = s%sn_l for some n > 0 and 1 < i < d, 1. Therefore, z is the singular factor
corresponding to s s,_1. Hence, if a denotes the last letter of s,,_1, then it follows
from Lemma 5 that z = as!,s),_;.

Next, denote p = s, 8,01 = glnritly
the word ap is a factor of x.
Let us denote the longest common suffix of ap and va by y. Since za is a suffix

of both p and wa, it is a suffix of y, as well. By Lemma 6, the word

n—1. Observe that, as a suffix of s, 125,41,

ap’ = o7 (sdrtls )
is unbordered. Since |ap’| = |sf€"“+lsn_1| > |ul, it then follows that y is a proper
suffix of ap because otherwise ap’ is a factor of w, contradicting the maximality
of |ul.
Since p, and hence also y, has a period ¢, the word u cannot be a factor of y
because u is unbordered and |u| = ig, + ¢,—1. Consequently, y is also a proper
suffix of va. This implies that y is a left special factor of x, and as such, a prefix

of c¢. In particular, s, is a prefix of y. Now the primitivity of s, and the fact
dnt1t+1

that y is a suffix of p = sp, $p—1 imply that we have y = s/ s,_; for some
i+1<j<dnt1+1 (for the left inequality, note that |y| > |u| = |s% sn—1].
We can rule out the possibility that j = d, 41 + 1 because the word szn“ﬂsn,l

is not a prefix of c. Indeed, this is straightforward to verify for n =0 and n = 1,
and Theorem 1 handles the case when n > 2.

Now, we see that @y is a suffix of p. Since y is a proper suffix of va, the
maximality of y implies that ay is a factor of va. Therefore ay’ is a factor of v, and
hence of w. But ay’ = as’s!,_; is unbordered by Lemma 6, and |ay’| > |za| > |ul,
contradicting the maximality of u. The proof is complete. O

The next result is the strongest result in this section, and it gives our desired
formula for the period set of x as a corollary.
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Theorem 3. The fractional oot of a factor of x is a conjugate of t,, for some
m > —1.

Proof. Let w be a factor of x. If w is unbordered, then according to Lemma 7,
it is a conjugate of some t,,, where m > —1. If w is bordered, Lemmas 8 and 7
imply that p(w) = |t,| for some m > 0. Consequently, the fractional root of w
is either a conjugate of t,,, or the singular factor at,,, where a is the last letter
of t,,. In the first case the claim holds, so may suppose that @t/ is the fractional
root of w.

Since p(w) < |w|, it follows that ¢/, @ is a factor of x. By the definition of
a singular factor, no other conjugates of at], except at], itself are factors of x.
Therefore, at,, = ¢/, a. This implies that the fractional root of w is actually the
letter @, and the claim follows. O

Theorem 3 implies the following characterization of the period set of x.

Corollary 3. The period set of x is the set
{Itm]: m>-1}y={1}U{ign +qn-1: n>0,i=1,...,dpy1}.

The famous Fibonacci word is the characteristic sequence with slope 1/¢, where
¢ = (1 ++/5)/2 denotes the golden ratio. As a special case of Corollary 3, we
obtain the next result, which was first proved in [14].

Corollary 4. The least period of a factor of the Fibonacci word is a Fibonacci
number.

5. APPLICATIONS

In this section we give four applications of our results in the previous section.
The first application by Harju and Nowotka [9] is a direct corollary of Lemma 7.

Corollary 5. Unbordered words that are factors of Sturmian words are Lyndon
words.

The next characterization of finite Sturmian words is by de Luca and De Luca [7],
Theorem 10.

Corollary 6. A finite word is a factor of a Sturmian word if and only if its
fractional root is a conjugate of a standard word.

Proof. Let a finite word w be a factor of a Sturmian word, say a factor of x using
the notation from the last section. Then by Theorem 3 the fractional root of w is
a conjugate of t,, for some m > —1, and t,, is a standard word.

Conversely, suppose w = u”, where w is a conjugate of a standard word, say s,
and 7 > 1 is rational. Then w is a factor of s¢72, where a = | 7], which clearly is
a prefix of a characteristic word. O
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Our last two corollaries below use a well-known theorem by Fine and Wilf [8],
which states that if two words ™ and y™ have a common prefix of length |z| +
ly| — ged(|zl, |y|), then both of them have a period ged(|z|, |y])-

Here is one more application of Theorem 3, see also Damanik and Lenz [6].

Corollary 7. If a square uu is a factor of x and w is primitive, then u is a
conjugate of t,, for some m > 0.

Proof. Let v denote the fractional root of uu, which by Theorem 3 is a conjugate
of t,, for some m > —1. The word 11 does not occur in x, so that m > 0. Then
uu = o7 for some rational 7 > 2, and we have |u| + |[v| < |uu|. By the theorem of
Fine and Wilf, wu has a period ged(|ul,|v]). Since v is the fractional root of uu,
this implies that |v| = ged(|ul, |v]), and hence |v| divides |u|. Since u is primitive,
it follows that u = v. O

Cummings et al. [5] gave two proofs showing that, for n > 2, the least period
of the finite Fibonacci word f,, is fn,—12. As our last result of this chapter, we
generalize the result of Cummings et al. to standard words. Let us use the notation
from the previous section, that is, s, is a standard word and s, = sfl[lsn,g.

Corollary 8. Ifn > 2, then the least period of s, equals qn_1.

Proof. Since s,, = sfl[lsn,g and s, o is a prefix of s,,_1, we see that ¢,_1 is a
period of s,. Hence we only need to show that ¢, 1 is the least period. To do
that, suppose the contrary: we have p(s,) < ¢n—1.

First, suppose that d,, > 2. Since s, has periods ¢,—1 and p(s,), and

Gn—1 +p(5n) < 2(]7171 < gn,

it follows from the theorem of Fine and Wilf that p(s,,) is a proper divisor of ¢, 1.
Since s,_1 is a prefix of s,,, this implies that s,,_1 is not primitive, a contradiction.

Second, suppose that d, = 1. If p(s,) < ¢n—2, we derive a contradiction as
above. Therefore we may assume that p(s,) > gn—2. Now, Theorem 3 implies that
p(sn) = iqn—2 + qn—3 with 1 <i < d,,_1. Then the word s!, 58,38, is a prefix
of s,,. But since s,_1 = SZ":QI Sn—g is also a prefix of s,, we obtain s, 38, 2 =
Sn—28n—3, which is absurd by Equation (2). This contradiction completes the
proof. O
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2To be precise, Cummings et al. showed that the longest border of fy is f,—2, but these two
claims are equivalent.
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