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CYCLE AND PATH EMBEDDING ON 5-ARY N-CUBES
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Abstract. We study two topological properties of the 5-ary n-cube
Q5

n. Given two arbitrary distinct nodes x and y in Q5
n, we prove that

there exists an x-y path of every length ranging from 2n to 5n−1, where
n ≥ 2. Based on this result, we prove that Q5

n is 5-edge-pancyclic by
showing that every edge in Q5

n lies on a cycle of every length ranging
from 5 to 5n.

Mathematics Subject Classification. 68R10, 68R05, 05C12.

1. Introduction

One of the most important problems in interconnection networks is the embed-
ding problem. All algorithms developed for network topology A can be directly
applied to topology B if topology A can be embedded into topology B. Lin-
ear arrays and rings are two fundamental networks for parallel and distributed
computation. Numerous efficient algorithms based on linear arrays and rings for
solving various algebraic and graph problems have been studied [1,8,10,12]. These
applications motivated us to embed paths (linear arrays) and cycles (rings) into
networks.

An interconnection network (network for short) is usually represented by a graph
where vertices represent processors and edges represent communication links be-
tween processors. A graph G = (V, E) is a pair comprised of the vertex set V and
the edge set E, where V is a finite set and E is a subset of {(u, v) : (u, v) is an
unordered pair of V }. We sometimes use V (G) and E(G) to denote the vertex set
and the edge set of G, respectively.
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A graph G = (V, E) is said to be panconnected (respectively, bipanconnected)
if for two arbitrary distinct nodes x and y of G, there exists an x-y path of every
length l for d(x, y) ≤ l ≤ |V |−1 (respectively, 2|(l−d(x, y)))1, where d(x, y) is the
distance of x and y (the length of a shortest path between x and y). On the other
hand, a graph G = (V, E) is pancyclic (respectively, bipancyclic) if G contains
a cycle of every length (respectively, every even length) from three (respectively,
four) to |V |. A bipancyclic graph G is further said to be edge-bipancylic if for
any edge e of G, there exists a cycle C of every even length such that e is in C.
Wang et al. [16] showed that Qk

2 is both bipanconnected and bipancyclic, and Qk
n

is Hamiltonian-connected when k is odd.
Many networks have been studied as attractive topologies for distributed and

parallel systems, including mesh, torus (also called a wrap-around mesh), hyper-
cube, and k-ary n-cube. In fact, the k-ary n-cube is an n-dimensional torus with
each dimension of the same size k, and the hypercube is a k-ary n-cube with
k = 2. Note that a mesh is a subgraph of a torus. Several parallel machines,
both commercial and experimental, have been proposed based on k-ary n-cube,
for example, Cray T3D and T3E (3D torus) [11], the Mosaic (k-ary n-cube) [13],
and the iWarp (torus) [2]. In particular, the k-ary n-cube has been one of the
most common interconnection networks for multi-processor systems [3,5,6,16].

Quite recently, Hsieh et al. [7] have investigated the panconnectivity and edge-
pancyclicity of 3-ary n-cubes Q3

n. In this paper, we further investigate the pancon-
nectivity and edge-pancyclicity of the 5-ary n-cube Q5

n which is a more complicated
topology than Q3

n. Given two arbitrary distinct nodes x and y in Q5
n, we prove

that there exists an x-y path of length l ranging from 2n to 5n − 1, where 2n is
the diameter of Q5

n. Based on this result, we prove that every edge in Q5
n lies

on a cycle of every length ranging from 5 to 5n. The remainder of this paper is
organized as follows. In the next section, some basic definitions and notations are
introduced. Our main results are presented in Sections 3 and 4. Finally, some
concluding remarks are presented in Section 5.

2. Preliminaries

Two vertices u and v are adjacent if (u, v) ∈ E(G). A subgraph of G = (V, E) is
a graph (V ′, E′) such that V ′ ⊆ V and E′ ⊆ E. Given a set V ′ ⊆ V , the subgraph
of G = (V, E) induced by V ′ is the graph G′ = (V ′, E′), where E′ = {(u, v) ∈
E : u, v ∈ V ′}. A path P [v0, vk] = 〈v0, v1, ..., vk〉 in a graph G is a sequence of
distinct vertices such that any two consecutive vertices are adjacent, and we call
v0 and vk the end-vertices of the path. A cycle is a path P [v0, vk] with v0 = vk and
k ≥ 3. A path with end-vertices u and v is said to be a u-v path. The length of a
path is the number of edges contained in the path. The distance between u and v,
denoted by dG(u, v), is the length of a shortest path P [u, v]. A path may contain
another path as a subpath, denoted by 〈v0, v1, ..., vi, P [vi, vj ], vj , vj+1, ..., vk〉, where

1The notation d|a means that a = kd for some integer k.
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Figure 1. (a) Q6
1, (b) Q5

2, and (c) Q3
3.

P [vi, vj ] = 〈vi, vi+1, ..., vj−1, vj〉. A cycle (respectively, path) in G is called a
Hamiltonian cycle (respectively, Hamiltonian path) if it contains every vertex of
G exactly once. A graph G is said to be Hamiltonian if it contains a Hamiltonian
cycle, and Hamiltonian-connected if there exists a Hamiltonian path between every
two distinct vertices of G.

A graph G = (V, E) is pancyclic, if G contains any cycle of length l satisfying
3 ≤ l ≤ |V |, that is, any cycle of length l can be embedded into G with dilation
one. Furthermore, G is edge-pancyclic if every edge of G lies on a cycle of every
length from 3 to |V |. G is L-edge-pancyclic if every edge of G lies on a cycle of
every length from L to |V |. The k-ary n-cube Qk

n (k ≥ 2 and n ≥ 1) has N = kn

nodes each of the form x = xnxn−1 . . . x1, where 0 ≤ xi < k for all 1 ≤ i ≤ n. Two
nodes x = xnxn−1 . . . x1 and y = ynyn−1 . . . y1 in Qk

n are adjacent if and only if
there exists an integer j, 1 ≤ j ≤ n, such that xj = yj ±1 (mod k) and xl = yl for
every l ∈ {1, 2, ..., n}−{j}. For clarity of presentation, we omit writing “(mod k)”
in similar expressions for the remainder of the paper. Note that each node has
degree 2n when k ≥ 3, and n when k = 2. Obviously, Qk

1 is a cycle of length k,
Q2

n is an n-dimensional hypercube, and Qk
2 is a k × k wrap-around mesh. In this

paper, we pay our attention on k = 5. Figure 1 illustrates Q6
1, Q5

2, and Q3
3.
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The ith position, from the right to the left, of the n-bit string xnxn−1 . . . x1 is
called the i-dimension. We can partition Q5

n along the i-dimension by regarding
the graph comprised of 5 disjoint copies, Q5

n−1[0], Q5
n−1[1], Q5

n−1[2], Q5
n−1[3], and

Q5
n−1[4],2 where Q5

n−1[j] is the subgraph of Q5
n induced by {x ∈ V (Q5

n)| the ith
bit xi of x = xnxn−1 . . . x1 is fixed by j ∈ {0, 1, 2, 3, 4}}. We call each Q5

n−1[j] a
subcube of Q5

n. Note that Q5
n−1[j] is isomorphic to a 5-ary (n − 1)-cube. Clearly,

there are exactly 5n−1 edges which form a perfect matching between Q5
n−1[j] and

Q5
n−1[j +1]. We call Q5

n−1[j] and Q5
n−1[j +1] adjacent subcubes, and call the edges

between two adjacent subcubes bridges.

3. Panconnectivity of 5-ary n-cubes

In this section, we investigate the panconnectivity of 5-ary n-cubes. We first
provide some previously known properties which are useful in our method.

Lemma 1 [3]. The diameter of Qk
n equals �k

2 	n.

Lemma 2 [16]. The following two statements hold:
(1) Qk

2 is bipanconnected.
(2) Qk

n is Hamiltonian-connected when k is odd.

Lemma 3. For any two distinct nodes x, y ∈ V (Q5
2) and any integer l with 4 ≤

l ≤ 24, Q5
2 contains an x-y path of length l.

Proof. We attempt to construct an x-y path of every length l for 4 ≤ l ≤ 24. Due
to the structure property of Q5

2, we need to consider the following five cases.

Case 1. x = 00 and y = 01.
Case 1.1: l is odd. We have d(x, y) = 1 and since Qk

2 is bipanconnected by
Lemma 2(1), all desired x-y paths can be obtained.

Case 1.2: l is even. A desired path of every even length can be obtained
from a Hamiltonian path 〈00, 04, 14, 24, 34, 44, 43, 42, 41, 40,
30, 31, 32, 33, 23, 22, 21, 20, 10, 11, 12, 13, 03, 02, 01〉 by subtracting length 2
successively till length of 4, using a routing strategy illustrated in Fig-
ures 2a–2f.

Case 2. x = 00 and y = 02.
Case 2.1: l is odd. A desired path of every odd length can be obtained from

a path 〈00, 04, 14, 24, 34, 44, 43, 42, 41, 40, 30, 31, 32, 33, 23, 22,
21, 20, 10, 11, 12, 13, 03, 02〉 by subtracting length 2 successively till length
of 5, using a routing strategy illustrated in Figures 3a–3f.

Case 2.2: l is even. We have d(x, y) = 2 and since Qk
2 is bipanconnected by

Lemma 2(1), all desired x-y paths can be obtained.

2Since the index i is not necessary to be specified, we omit it from the notation.
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Figure 2. An illustration of case 1 in the proof of Lemma 3.

Figure 3. An illustration of case 2 in the proof of Lemma 3.
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Figure 4. An illustration of case 3 in the proof of Lemma 3.

Case 3. x = 00 and y = 11. The proof is similar to Case 2 (see Fig. 4).

Case 4. x = 00 and y = 12. The proof is similar to Case 1 (see Fig. 5).

Case 5. x = 00 and y = 22. The proof is similar to Case 2 (see Fig. 6). �
For convenience, we use the notation “u 
→ v” to mean that (u, v) is a bridge

between two adjacent subcubes.

Theorem 1. For any two distinct nodes x, y ∈ V (Q5
n), where n ≥ 2, and any

integer l with 2n ≤ l ≤ 5n − 1, there exists an x-y path of length l.

Proof. We prove this theorem by induction on n. By Lemma 3, the base result
holds for n = 2. Suppose that the result holds for the 5-ary (n − 1)-cube. We
now consider Q5

n, where n ≥ 3. We partition Q5
n along the dimension i into five

subcubes Q5
n−1[0], Q5

n−1[1], Q5
n−1[2], Q5

n−1[3], and Q5
n−1[4]. We will attempt to

construct an x-y path of every length l with 2n ≤ l ≤ 5n − 1. There are the
following two scenarios.

Case 1: 2n ≤ l ≤ 5n−1−1. Without loss of generality, we assume that x is in
Q5

n−1[0]. Due to the structure of Q5
n, we only consider that y is in Q5

n−1[j],
where j=0, 1, or 2. Let u1 be a node in Q5

n−1[1] such that x 
→ u1 if y is
in Q5

n−1[1]. Let u2 be a node in Q5
n−1[2] such that x 
→ u1 
→ u2 if y is in

Q5
n−1[2], where u1 is a node in Q5

n−1[1]. Let u0 = x if y is in Q5
n−1[0]. If

u1 = y or u2 = y, then we can partition Q5
n along another dimension i′(�= i)

such that x and y are in the same subcube. By the induction hypothesis,
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Figure 5. An illustration of case 4 in the proof of Lemma 3.

Figure 6. An illustration of case 5 in the proof of Lemma 3.
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Q5
n−1[j] contains a path Pj [uj , y] of length lj with 2(n−1) ≤ lj ≤ 5n−1−1.

An x-y path of length l1 with 2(n− 1)+1 ≤ l1 ≤ 5n−1 can be constructed
by 〈x, u1, P1[u1, y], y〉 if y is in Q5

n−1[1], and an x-y path of length l2 with
2n ≤ l2 ≤ 5n−1 + 1 can be constructed by 〈x, u1, u2, P2[u2, y], y〉 if y is in
Q5

n−1[2]. Therefore, any path of the specified length can be constructed.
Case 2: 5n−1 ≤ l ≤ 5n − 1. Without loss of generality, we assume that x

is in Q5
n−1[0]. Due to the structure of Q5

n, we only consider y to be in
Q5

n−1[0], Q5
n−1[1], or Q5

n−1[2]. No matter which subcube y is in, we can
construct an x-y path by using a routing strategy illustrated in Figure 7.
Note that P0 is an x-y path in Figure 7a and an x-v path in Figure 7b
and c. By the induction hypothesis, Q5

n−1[k] contains a path Pk of length
lk with 2(n − 1) ≤ lk ≤ 5n−1 − 1, where 0 ≤ k ≤ 4. Thus, an x-y path of
length l = l0 + l1 + l2 + l3 + l4 + 4 with 10n − 6 ≤ 5n−1 ≤ l ≤ 5n − 1 can
be constructed, where n ≥ 3.

The proof is completed from the above two cases. �

Remarks 1. Note that when d(x, y) = 1, there is no x-y path of length 2 in Q5
n.

Therefore, the range of length l in the statement of Theorem 1 cannot start with
d(x, y).

4. Edge-pancyclicity of 5-ary n-cubes

In this section, we investigate the edge-pancyclicity of 5-ary n-cubes according
to the results obtained in Section 3.

Lemma 4. For any edge (x, y) ∈ E(Q5
2) and any integer l with 5 ≤ l ≤ 25, there

exists a cycle C of length l such that (x, y) is in C.

Proof. Given two adjacent nodes x and y in Q5
2, without loss of generality, let

x = 00 and y = 01, there exists an x-y path P [x, y] of every length l for 4 ≤ l ≤ 24
by the Case 1 of proof in Lemma 3. Then P [x, y] + (x, y) forms a cycle of every
length l for 5 ≤ l ≤ 25. Therefore, the result holds. �

Theorem 2. For any edge (x, y) ∈ E(Q5
n), where n ≥ 1, and any integer l with

5 ≤ l ≤ 5n, there exists a cycle C of length l such that (x, y) is in C. That is, Q5
n

is 5-edge-pancyclic.

Proof. We prove this theorem by induction on n. The result clearly holds for n = 1
because Q5

1 is a cycle of length 5, and also holds for n = 2 by Lemma 4. Suppose
that the result holds for 5-ary (n − 1)-cubes. We now consider Q5

n. We partition
Q5

n along the dimension i into five subcubes Q5
n−1 [0], Q5

n−1 [1], Q5
n−1 [2], Q5

n−1 [3],
and Q5

n−1 [4]. Without loss of generality, we assume that (x, y) is in Q5
n−1 [0].

Case 1 5 ≤ l ≤ 5n−1 (see Fig. 8a). By the induction hypothesis, Q5
n−1 [0] contains

a cycle C0 of length l such that (x, y) is in C0.
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Figure 7. An illustration of the proof of Theorem 1.
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Figure 8. An illustration of the proof of Theorem 2.

Case 2 5n−1 + 1 ≤ l ≤ 5n (see Fig. 8b). By the induction hypothesis, Q5
n−1[0]

contains a cycle C0 of length 5n−1 such that (x, y) is in C0. Clearly,
we can select a path P0[x, w] = 〈x, y, ..., w〉 from C0 whose length l0
satisfies 5n−1 − 8n + 4 ≤ l0 ≤ 5n−1 − 1. We can represent P0[x, w] as
〈x, y, P ′

0[y, w], w〉. Furthermore, we can select two distinct nodes ui and
vi in Q5

n−1[i] for i ∈ {1, 2, 3, 4} such that x 
→ u1, v1 
→ v2, u2 
→ u3,
v3 
→ u4, and v4 
→ w. By Theorem 1, Q5

n−1[i] contains a path Pi[ui, vi]
of length li with 2(n − 1) ≤ li ≤ 5n−1 − 1 for i ∈ {1, 2, 3, 4}.

Therefore, 〈x, y, P ′
0[y, w], w, v4, P4[v4, u4], u4, v3, P3[v3, u3], u3, u2, P2[u2,

v2], v2, v1, P1[v1, u1], u1, x〉 forms a cycle of length l(= l0+l1+l2+l3+l4+5)
such that (x, y) is in the cycle and 5n−1 + 1 ≤ l ≤ 5n.

By combining cases 1–2, we complete the proof. �

Remarks 2. Since Q5
1 has no cycle of length l = 3, 4 and Q5

2 has no cycle of
length 3, we can conclude that Q5

n for n ≥ 1 is only 5-edge-pancyclic.
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A graph G is L-node-pancyclic if every node of G lies on a cycle of every length
from L to |V (G)| for some constant L. The following result follows directly from
Theorem 2.

Corollary 1. The 5-ary n-cube Q5
n is 5-node-pancyclic.

5. Concluding remarks

In this paper, we have focused on topology embedding, where a 5-ary n-cube
Q5

n acts as the host graph and paths (cycles) represent the guest graphs. Given
two arbitrary distinct nodes x and y, we prove that Q5

n can embed an x-y path of
length l ranging from 2n to 5n − 1, where 2n is the diameter of Q5

n. Based on this
result, we also prove that every edge in Q5

n lies on a cycle of every length ranging
from 5 to 5n.

Paths (linear arrays) and cycles (rings) are two fundamental networks for paral-
lel and distributed computation, and are suitable for designing simple algorithms
with low communication costs. Our results show that algorithms designed for
paths (cycles) can also be executed well on Q5

n. A future work is to extend our
result to the k-ary n-cube for a general k.
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