For finitary set functors preserving inverse images, recursive coalgebras
Keywords: recursive coalgebra, coalgebra, definition by recursivity
@article{ITA_2007__41_4_447_0, author = {Ad\'amek, Ji\v{r}{\'\i} and L\"ucke, Dominik and Milius, Stefan}, title = {Recursive coalgebras of finitary functors}, journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications}, pages = {447--462}, publisher = {EDP Sciences}, volume = {41}, number = {4}, year = {2007}, doi = {10.1051/ita:2007028}, mrnumber = {2377973}, language = {en}, url = {https://www.numdam.org/articles/10.1051/ita:2007028/} }
TY - JOUR AU - Adámek, Jiří AU - Lücke, Dominik AU - Milius, Stefan TI - Recursive coalgebras of finitary functors JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications PY - 2007 SP - 447 EP - 462 VL - 41 IS - 4 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/ita:2007028/ DO - 10.1051/ita:2007028 LA - en ID - ITA_2007__41_4_447_0 ER -
%0 Journal Article %A Adámek, Jiří %A Lücke, Dominik %A Milius, Stefan %T Recursive coalgebras of finitary functors %J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications %D 2007 %P 447-462 %V 41 %N 4 %I EDP Sciences %U https://www.numdam.org/articles/10.1051/ita:2007028/ %R 10.1051/ita:2007028 %G en %F ITA_2007__41_4_447_0
Adámek, Jiří; Lücke, Dominik; Milius, Stefan. Recursive coalgebras of finitary functors. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 41 (2007) no. 4, pp. 447-462. doi : 10.1051/ita:2007028. https://www.numdam.org/articles/10.1051/ita:2007028/
[1] A Final Coalgebra Theorem, Proceedings Category Theory and Computer Science, edited by D.H. Pitt et al. Lect. Notes Comput. Sci. (1989) 357-365.
and ,[2] Terminal coalgebras and free iterative theories. Inform. Comput. 204 (2006) 1139-1172. | Zbl
and ,[3] Automata and Algebras in Categories. Kluwer Academic Publishers (1990). | MR | Zbl
and ,[4] Recursive coalgebras of finitary functors, in CALCO-jnr 2005 CALCO Young Researchers Workshop Selected Papers, edited by P. Mosses, J. Power and M. Seisenberger, Report Series, University of Swansea, 1-14.
, and ,[5] Terminal coalgebras in well-founded set theory. Theoret. Comput. Sci. 114 (1993) 299-315. | Zbl
,[6] Recursive coalgebras from comonads. Inform. Comput. 204 (2006) 437-468. | Zbl
, and ,[7] Set functors. Comment. Math. Univ. Carolin. 12 (1971) 175-195. | Zbl
,[8] A fixpoint theorem for complete categories. Math. Z. 103 (1968) 151-161. | Zbl
,[9] Completely iterative algebras and completely iterative monads. Inform. Comput. 196 (2005) 1-41. | Zbl
,[10] Well-founded relations; generalizations of principles of induction and recursion (abstract). Bull. Amer. Math. Soc. 61 (1955) 442.
,[11] Categorical set theory: a characterization of the category of sets. J. Pure Appl. Algebra 4 (1974) 79-119. | Zbl
,[12] Universal coalgebra, a theory of systems. Theoret. Comput. Sci. 249 (2000) 3-80. | Zbl
,[13] Practical Foundations of Mathematics. Cambridge University Press (1999). | MR | Zbl
,[14] On a descriptive classification of set-functors I. Comment. Math. Univ. Carolin. 12 (1971) 143-174. | EuDML | Zbl
,- Exact sequences in categories of coalgebras, Journal of Algebra and Its Applications, Volume 24 (2025) no. 02 | DOI:10.1142/s0219498825500331
- Perspectives of semantic modeling in categories, Journal of King Saud University Computer and Information Sciences, Volume 37 (2025) no. 3 | DOI:10.1007/s44443-025-00010-9
- Strong functional pearl: Harper’s regular-expression matcher in Cedille, Proceedings of the ACM on Programming Languages, Volume 4 (2020) no. ICFP, p. 1 | DOI:10.1145/3409004
- Well-founded coalgebras, revisited, Mathematical Structures in Computer Science, Volume 27 (2017) no. 7, p. 1111 | DOI:10.1017/s0960129515000481
- A Coalgebraic View of Bar Recursion and Bar Induction, Foundations of Software Science and Computation Structures, Volume 9634 (2016), p. 91 | DOI:10.1007/978-3-662-49630-5_6
- Conjugate Hylomorphisms – Or, ACM SIGPLAN Notices, Volume 50 (2015) no. 1, p. 527 | DOI:10.1145/2775051.2676989
- , Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (2015), p. 527 | DOI:10.1145/2676726.2676989
- Optimal Coin Flipping, Horizons of the Mind. A Tribute to Prakash Panangaden, Volume 8464 (2014), p. 407 | DOI:10.1007/978-3-319-06880-0_21
- , Proceedings of the 9th ACM SIGPLAN workshop on Generic programming (2013), p. 1 | DOI:10.1145/2502488.2502496
- Language Constructs for Non-Well-Founded Computation, Programming Languages and Systems, Volume 7792 (2013), p. 61 | DOI:10.1007/978-3-642-37036-6_4
- Adjoint folds and unfolds—An extended study, Science of Computer Programming, Volume 78 (2013) no. 11, p. 2108 | DOI:10.1016/j.scico.2012.07.011
- Structured general corecursion and coinductive graphs [extended abstract], Electronic Proceedings in Theoretical Computer Science, Volume 77 (2012), p. 55 | DOI:10.4204/eptcs.77.8
- , Proceedings of the 8th ACM SIGPLAN workshop on Generic programming (2012), p. 69 | DOI:10.1145/2364394.2364405
- Coequational logic for accessible functors, Information and Computation, Volume 208 (2010) no. 12, p. 1469 | DOI:10.1016/j.ic.2009.10.010
- Presentation of Set Functors: A Coalgebraic Perspective, Journal of Logic and Computation, Volume 20 (2010) no. 5, p. 991 | DOI:10.1093/logcom/exn090
- Corecursive Algebras: A Study of General Structured Corecursion, Formal Methods: Foundations and Applications, Volume 5902 (2009), p. 84 | DOI:10.1007/978-3-642-10452-7_7
- Coequational Logic for Finitary Functors, Electronic Notes in Theoretical Computer Science, Volume 203 (2008) no. 5, p. 243 | DOI:10.1016/j.entcs.2008.05.028
Cité par 17 documents. Sources : Crossref