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Abstract. The HP model is one of the most popular discretized mod-
els for attacking the protein folding problem, i.e., for the computational
prediction of the tertiary structure of a protein from its amino acid
sequence. It is based on the assumption that interactions between
hydrophobic amino acids are the main force in the folding process.
Therefore, it distinguishes between polar and hydrophobic amino acids
only and tries to embed the amino acid sequence into a two- or three-
dimensional grid lattice such as to maximize the number of contacts,
i.e., of pairs of hydrophobic amino acids that are embedded into neigh-
boring positions of the grid.

In this paper, we propose a new generalization of the HP model
which overcomes one of the major drawbacks of the original HP model,
namely the bipartiteness of the underlying grid structure which se-
verely restricts the set of possible contacts. Moreover, we introduce
the (biologically well-motivated) concept of weighted contacts, where
each contact gets assigned a weight depending on the spatial distance
between the embedded amino acids. We analyze the applicability of ex-
isting approximation algorithms for the original HP model to our new
setting and design a new approximation algorithm for this generalized
model.
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1. Introduction

To determine the three-dimensional structure of proteins is one of the most
important and challenging problems in computational biology with many applica-
tions, e.g. in the area of pharmaceutics and drug design.

Proteins are chains of smaller molecular entities, the so-called amino acids,
they are expected to fold in space according to the chemical characteristics of
these amino acids [2, 3]. In particular, one distinguishes between hydrophobic
and hydrophilic (polar) amino acids, and interactions between hydrophobic amino
acids are assumed to be the driving force in the folding of proteins.

To study the process of protein folding incorporating these hydrophobic forces,
Dill et al. [7, 8] introduced the HP model. In this model, one searches for an
embedding of a protein, given in terms of a string over 0 and 1 (encoding for polar
and hydrophobic amino acids, respectively), into a grid. Counting the number
of ones placed on adjacent positions (that are not already adjacent in the string)
in the grid, gives a measure of the stability of the folding. This setting was
algorithmically analyzed by Hart and Istrail [9], who proposed a 4-approximation
for this problem, which was further improved by Newman [10] obtaining a 3-
approximation for two-dimensional grids. Further results on this topic include
other lattice types, heuristic algorithms, or extended models. An overview of the
existing literature is for instance given in the survey paper [5].

A major drawback of the original HP model is the bipartiteness of the under-
lying grid. One possible approach for overcoming this drawback was proposed in
[1], where the embedding of protein sequences into a triangular grid lattice was
studied.

Another approach was taken in [4], where the authors studied the HP problem
on a rectangular grid with additional diagonals. While this removes the bipar-
titeness of the underlying grid, it introduces a new weakness to the model. In
particular, 45◦, 90◦, 135◦, and 180◦ become feasible angles between two consec-
utive amino acids in this model. Even though the angles in every previously
considered underlying lattice for the HP problem do not perfectly fit the chemical
reality, especially the 45◦ angles seem to be problematic.

On the other hand, binding forces are not restricted to possible folding angles of
the molecule. Therefore, to avoid these sharp angles and the bipartiteness as well,
we will now introduce a kind of two-level lattice, where the folding is restricted to
the grid of the original HP model, but the binding forces are also effective along
the diagonals in this grid structure.

Moreover, we want to account for the different distance between two embedded
amino acids along a diagonal edge or along a horizontal/vertical edge of the grid.
More formally, for a given folding, we will evaluate this folding by weighting each
adjacency of two hydrophobic amino acids along a horizontal or vertical edge of
the underlying grid lattice by 1 and each adjacency of two hydrophobic amino
acids along a diagonal edge by a parameter α, where 0 ≤ α ≤ 1. We refer to
the resulting model as the α-DC-HP2d model in the following. The resulting
maximization problem is studied in this paper.
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In the sequel we will study the α-DC-HP2d problem in more detail. We will
first give some basic notions and observations in Section 2 and present some upper
bounds on the overall contact weight that might be achieved by any conformation
in Section 3. After that, we turn our attention to approximation algorithms and
investigate the performance of a classical algorithm for the HP model in the con-
text of this model and of a specially designed algorithm in Sections 4.2 and 4.3,
respectively. We conclude the paper by a discussion of the proposed algorithms
and the presentation of some open problems in Section 5.

2. Preliminary notions and observations

Before we start with the formal description of the problem, we first define the
two underlying lattice types.

Definition 2.1. The two-dimensional grid lattice is the infinite graph L� = (V, E)
with vertex set V = Z

2 and edge set E = {{x, x′} | x, x′ ∈ Z
2, |x − x′| = 1}.

The two-dimensional grid lattice with diagonals is the infinite graph L� =
(V, E) with vertex set V = Z

2 and edge set E = {{x, x′} | x, x′ ∈ Z
2, |x−x′| ≤ √

2}.
We consider the input of our problem, namely a chain of amino acids, as a

string over {0, 1} encoding the hydrophobicity of each amino acid. We will use
a 1 to denote a hydrophobic amino acid and a 0 to denote a polar (hydrophilic)
amino acid.

Definition 2.2. Let p = p1 . . . pm be a string of length m over the alphabet
{0, 1}, and let L = (V, E) ∈ {L�,L�} be a lattice. A conformation of p into L is
an injective function ϕ : {1, . . . , m} → V from the positions of the string to the
vertices of the lattice that assigns adjacent positions in p to adjacent vertices in L,
i.e., {ϕ(i), ϕ(i + 1)} ∈ E for all 1 ≤ i ≤ m − 1. These edges {ϕ(i), ϕ(i + 1)} ∈ E
for 1 ≤ i ≤ m − 1 are called binding edges.

An edge {x, x′} of L is called a contact edge, if it is no binding edge, but there
exist i, j ∈ {1, . . . , m} such that ϕ(i) = x, ϕ(j) = x′, and pi = pj = 1.

Whenever a conformation of a string is given, we will call a vertex of the lattice
to which there was assigned a one [zero] by this conformation a one-vertex [zero-
vertex ] or simply a one [zero]. The vertices of the lattice which are not occupied
by a one or a zero are called unused. A binding edge connecting a one with a zero
will be called an alternation edge and a non-binding edge adjacent to a one that
is no contact edge is called a loss edge.

A further refinement of our model concerns the intensity of the chemical forces
along the different types of edges in L�. As the adjacency of two amino acids via
a diagonal edge implies a greater distance and thus a smaller chemical binding
force as between two amino acids which are connected by a horizontal/vertical
edge, we introduce an additional parameter α (0 ≤ α ≤ 1) to measure this loss of
binding power relatively to the binding power given by horizontal/vertical edges.
In particular, we will count a contact weight of 1 for each horizontal/vertical
contact edge and a contact weight of α for each diagonal contact edge.
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Now, the resulting problem is defined as follows.

Definition 2.3. The protein folding problem in the 2-dimensional α-DC-HP2d

model, denoted as α-DC-HP2d problem, is the following optimization problem:
Input: A string p = p1 . . . pm over the alphabet {0, 1} and a parameter α

with 0 ≤ α ≤ 1.
Feasible solutions: All conformations of p in L�.
Costs: The cost of a conformation ϕ is the overall contact weight of all

contact edges of ϕ in L�, i.e.,

cost(ϕ) =
∑

contact edges

in L�

1 +
∑

contact edges

in L� \ L�

α.

Goal: Maximization.

Note that the conformation is restricted to be an embedding in L�, but the
overall contact weight is computed with respect to L�, i.e., we also allow for
diagonal contacts.

Using this definition, we have removed the possibility of sharp 45◦ angles by
restricting the conformation to L� which is the lattice also used in the original
HP model, and furthermore we got around the weakness of bipartiteness of L� by
counting contacts in the L� lattice.

Please note that, although we defined the α-DC-HP2d problem with respect
to computing the overall contact weight of contact edges, we will for convenience
locally count for every one-vertex of the lattice the number of incident contact
edges, and we will call these incident contact edges the contacts of this one1. By
summing up the number of contacts over all ones, we will count every contact
edge exactly twice. Since we will use this way of counting both for the contacts
achieved by our algorithm and for the number of hypothetically possible contacts,
this will not affect the approximation ratio.

For an input string p over the alphabet {0, 1}, we denote a maximal block of a
single one as a singleton, a maximal block of two ones as a pair, and a maximal
block of three ones as a triple in p.

We will investigate our algorithms with respect to asymptotic approximation
only. Thus, we can in particular assume without loss of generality that input
strings for the α-DC-HP2d problem will start and end with zeros.

Moreover, as we are looking for a folding in L�, also the bipartiteness of this
grid structure will play a role. Therefore, for a string p over {0, 1}, let odds(p) and
evens(p) denote the number of ones on odd and even positions in p, respectively.

Let µ = 2 · min{odds(p), evens(p)}. Thus, µ denotes the maximal number of
horizontal/vertical contacts that could be established for p. Note that, due to
the bipartiteness of L�, horizontal/vertical contacts can occur between ones with
different parity only. Hence, at most 2 · min{odds(p), evens(p)} contact edges

1Please note that the contact edges according to our definition are sometimes called contacts
in the existing literature on the HP model.



A WEIGHTED HP MODEL WITH DIAGONAL CONTACTS 379

are possible, as each one may have two incident contact edges. (This is exactly
the upper bound also provided by [9, 10].) Therefore, the number of possible
horizontal/vertical contacts is bounded by 2µ.

Clearly, as the α-DC-HP2d problem for α = 0 is exactly the original HP problem,
the α-DC-HP2d problem inherits its hardness from the hardness result for the two-
dimensional HP problem [6].

Theorem 2.4. The α-DC-HP2d problem is NP-hard. �

We would like to point out that, concerning the analysis of loss edges, we do
not need to distinguish between vertices of the grid which are labeled by zero and
those which are completely unlabeled. Thus, for convenience, we can assume that
unlabeled vertices are labeled with zero for our considerations.

3. Upper bounds on the overall contact weight

In this section we will establish some upper bounds on the overall contact weight
that could be achieved for the α-DC-HP2d problem.

The first bound easily results from counting the number of possible neighbors.

Lemma 3.1. Let p ∈ {0, 1} be a string starting and ending with a zero, let ϕ be
a conformation of p in L�, and let n denote the number of ones in p. Then the
overall contact weight is at most 2µ + 4αn.

Proof. Each one has at most 4 horizontal/vertical neighbors in the grid. Two of
these neighboring positions are occupied with the adjacent positions in the input
string and thus cannot serve as contacts. Therefore, we achieve the same bound
on the number of horizontal/vertical contacts as in the original HP model, which
is 2µ as discussed above. Moreover, there are at most 4 possible diagonal contacts
incident to any 1-vertex that each contribute α to the overall contact weight. �

A more sophisticated upper bound is based on the observation that a zero, which
is adjacent to a one in the input string, will prevent the ones in its neighborhood
from being incident to the maximal number of six contact edges.

To establish this result, we consider the number (and the weight) of loss edges
that are unavoidable in the neighborhood of an alternation edge. Here, we follow
the similar argument from [1,4]. Informally, the neighborhood of an edge e consists
of the intersection of the sets of vertices that are adjacent to both of the endpoints
of e and of those edges that are adjacent to e as shown in Figure 1.

Definition 3.2. Let e = {x, y} be any edge in L� = (V (L�), E(L�)). We define
the neighborhood of e as the subgraph N(e) = (V, E) of L�, where

V = {v ∈ V (L�) | {v, x}, {v, y} ∈ E(L�)} ∪ {x, y} and

E = {{x, v}, {y, v} ∈ E(L�) | v ∈ V }.
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(a) (b)

Figure 1. The neighborhood N(e) of the edge e = {x, y}, if e is
a horizontal/vertical edge (a), or if e is a diagonal edge (b). The
edges belonging to the neighborhood are shown as dotted lines.

With the following lemma, we will analyze the neighborhood of a loss edge.

Lemma 3.3. Let p be an input string for the α-DC-HP2d problem, let ϕ be any
conformation of p, and let l = {x, y} be any loss edge of ϕ, where y denotes the
embedded 1-vertex.

(i) If l is a horizontal/vertical edge and y is a singleton, there are at most
four alternation edges inside N(l).

(ii) If l is a horizontal/vertical edge and y is not a singleton, there are at most
three alternation edges inside N(l).

(iii) If l is a diagonal edge, there are at most two alternation edges inside N(l).

Proof. Since both vertices x and y can be adjacent to at most two binding edges,
it follows immediately that there are at most four alternation edges adjacent to l.
But in this case, y is forced to be a singleton. Otherwise, y could be incident to
at most one alternation edge. This immediately gives the proof for (i) and (ii).
For (iii) consider Figure 1b, there can be at most two alternation edges inside N(l)
here, since, if there are two alternation edges, the remaining vertices in N(l) are
labeled zero and one, respectively. Thus, none of the remaining edges in N(l) can
be alternation edges. Please note that also the diagonal edge crossing l cannot
be an alternation edge, since the embedding is restricted to the rectangular grid
lattice only. �
Lemma 3.4. If there exist two orthogonal alternation edges which are adjacent to
a horizontal/vertical loss edge l such as shown in Figure 2, then there are

(i) at most three alternation edges inside N(l), if the vertex z is a one, and
(ii) at most two alternation edges inside N(l), if the vertex z is a zero.

Proof. The edge f1 cannot be an alternation edge since otherwise the vertex y
would be incident to three binding edges, which proves (i). If z is a zero, then both
endpoints of f2 are zeros, hence f2 is no alternation edge, which proves (ii). �

Lemma 3.5. Let p = 0+b10+b20+ . . . 0+bk0+ be an input string for the α-DC-
HP2d problem for some 0 ≤ α ≤ 1, where bi ∈ {1}+ for 1 ≤ i ≤ k, let n =

∑k
i=1 |bi|

be the number of ones in p. Then the overall contact weight in any conformation
is at most 2n + 4α · n − 2k · min{ 2

3 , α}.
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Figure 2. A vertical loss edge l in the neighborhood of at most
three alternation edges.
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Figure 3. The neighborhood of an alternation edge. The alter-
nation edge e under consideration is depicted by a bold line, the
possible further alternation edges in its neighborhood are depicted
by bold dashed lines, and the loss edges in its neighborhood are
shown as thin lines.

Proof. Since every one can have at most two horizontal/vertical contacts and four
diagonal contacts, we know that the overall contact weight is at most 2n+4α·n. Let
ϕ be any conformation of p. We will now analyze the weight of the indespensible
losses around the alternation edges of p. For this we will investigate the loss
edges in the neighborhood of any alternation edge e. We will distinguish ten cases
according to the labeling of the vertices in this neighborhood N(e). These cases
are depicted in Figure 3, all cases not shown in this figure are obviously symmetric
to one of the shown cases.

Every subfigure shows all edges between zero-vertices and one-vertices within
N(e). The more of these edges are also alternation edges, the smaller the weight
of the loss edges in N(e) becomes. Thus, the maximal number of alternation edges
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Table 1. The maximal total weights of loss edges in the neigh-
borhood of an alternation edge.

case (a), (j) (b), (h) (c), (i) (d), (f) (e) (g)

weight of loss edges 1
2 + 3

2 · α 3
2 · α 1

3 + 1
2 · α α 2

3 2 · α

inside N(e) is also shown in the figure. The weight of the remaining loss edges can
be calculated as follows.

Case (a): In this case, there are one vertical and two diagonal loss edges. The
upper diagonal loss edge is adjacent to two alternation edges and thus can
be counted with weight α

2 according to Lemma 3.3 (iii), while the lower
diagonal loss edge can be counted with weight α, since there cannot be
another alternation edge besides e in its neighborhood. The vertical loss
edge can be inside the neighborhoods of at most two alternation edges,
as it satisfies the preconditions of Lemma 3.4 (ii), thus its weight can be
counted as 1

2 . Altogether, this gives a weight of 1
2 + 3

2 · α in this case.
Case (b): In this case, N(e) contains three diagonal loss edges. All of these

edges could be adjacent to two alternation edges, thus their weight can be
counted as 3

2 · α altogether.
Case (c): Here, the neighborhood of e contains one vertical and one diagonal

loss edge. The vertical loss edge is adjacent to at most three alternation
edges, according to Lemma 3.4 (i). Hence it contributes a weight of 1

3 . The
diagonal loss edge is adjacent to two alternation edges and thus contributes
a weight of α

2 . This adds up to an overall weight of 1
3 + 1

2 · α.
Case (d): In this case, there are two diagonal loss edges, both of which are

adjacent to two alternation edges. The overall weight thus sums up to α.
Case (e): The neighborhood of e contains two vertical loss edges in this case.

Lemma 3.4 (i) is applicable to both of these edges, thus the total weight
is 2

3 in this case.
Case (f): Here, there are two diagonal loss edges, which both can be adjacent

to two alternation edges, this results in an overall weight of α.
Case (g): In this case, there are four diagonal loss edges. All of them could be

adjacent to two alternation edges, hence the total weight can be estimated
as 2 · α.

Case (h): This case is symmetric to case (b).
Case (i): This case is symmetric to case (c).
Case (j): This case is symmetric to case (a).

We summarize the results of the particular cases in Table 1.
An easy calculation shows that the weight associated with one alternation edge

takes its minimum value in case (e), if α > 2
3 , and in cases (d) or (f), if α ≤ 2

3 .
This proves the claim of the lemma. �
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Figure 4. A conformation of the string p2 from Lemma 3.7.
Binding edges are shown by bold lines, contact edges are depicted
as dashed lines.

Theorem 3.6. Let p = 0+b10+b20+ . . . 0+bk0+ be an input string for the α-DC-
HP2d problem for some 0 ≤ α ≤ 1, where bi ∈ {1}+ for 1 ≤ i ≤ k, let n =

∑k
i=1 |bi|

be the number of ones in p. Then the overall contact weight in any conformation
is at most

4α · n + min{2µ, 2n− 2k · min{ 2
3 , α}}.

Proof. The claim follows immediately from Lemmas 3.1 and 3.5. �

The next lemma shows that the bound from Theorem 3.6 cannot be improved
for the case that µ is small. To prove this, we construct a string that will nearly
fit the proved upper bound. The idea is to fold this string into the shape of a
square, where at each edge side m ones interspaced by single zeros occur and also
the corners are labeled by zeros. This will result in a chessboard like pattern. The
assumed string thus consists of (2m + 1)2 = 4m2 + 4m + 1 = 1 + 2(2(m2 + m))
symbols, ones and zeros alternating with each other.

Lemma 3.7. For any m ∈ N, the string pm = 0(10)2(m
2+m) can be embedded into

L� such that it achieves a overall contact weight of 4α ·2(m2 +m)−2α ·4m in L�
α .

Proof. A conformation of p2 is shown in Figure 4, the generalization to other values
of m is straightforward. In this conformation, every inner one-vertex achieves four
contacts of weight α, and every one-vertex at the border of the conformation
achieves two such contacts, which adds up to the claimed weight. �

Please note that, for the strings pm from Lemma 3.7, the parameter µ is zero
since all ones are on even positions in the string. Thus, the conformation as de-
scribed above meets the upper bound from Theorem 3.6 up to an additive second-
order term of Ω(α · √n), where n denotes as usual the number of ones.
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4. Approximation algorithms

4.1. HP algorithms in the α-DC-HP2d model

Our goal is now to compute embeddings of 0/1 strings into L� that achieve as
many contacts as possible. In principle, all algorithms for the original HP problem,
where we do not consider diagonal contact edges, yield feasible solutions for the
α-DC-HP2d problem. So it seems to be meaningful to analyze for instance the
algorithms given by Hart and Istrail [9] and Newman [10] with respect to this
model.

However, these algorithms cannot guarantee any approximation ratio in general.
This is due to the fact that the structure of the embedding computed by these
algorithms heavily depends on the upper bound derived from the bipartiteness of
the underlying grid and therefore partitions the ones in the input string rigorously
into an odd and an even part according to their index in the string. If, in the
extreme, the input string contains only ones at even positions, the so far proposed
HP-algorithms guarantee no contact at all. Anyway, we will examine the algo-
rithm proposed by Newman with respect to our approach of weighted diagonals,
to investigate for which cases it might nevertheless be reasonable.

Clearly, if µ is about n, the number of ones in the input, Newman’s algorithm
will achieve a constant approximation ratio (at least 9), since for at least 1

3 of all
possible contacts (we have 4 potential diagonal contacts and 2 potential horizon-
tal/vertical contacts) it achieves at least one third of the possible overall contact
weight.

4.2. Newman’s algorithm in the α-DC-HP2d model

To be selfcontained, we first rephrase the algorithm proposed by Newman in
[10] and essentially perform the same analysis with additionally counting diagonal
edges.

Since Newman’s algorithm is originally designed for the classical HP model,
where we ignore diagonal edges, it was compared in [10] to the upper bound
of 2µ only. Therefore, it was quite reasonable and sufficient for proving a 3-
approximation to assume that all inputs have the same number of even and odd
ones. We will include this assumption also here, although it does not remain
meaningful in our context. However, at the end of this section we will discuss the
possibility of relaxations of this assumption.

So, let p be a 0/1 string with evens(p) = odds(p) that starts and ends with a
zero.2 Furthermore, we may also consider the loop p◦ instead of p, where the end
positions of p are joined to form a cycle. If there exists a folding guaranteeing a
certain overall contact weight for p◦, then the same folding obviously guarantees
the same overall contact weight for p.

2As we deal with asymptotic approximation only, this restriction concerning the end positions
of p does not matter.
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The basic idea of Newman’s algorithm is to compute a folding point and to con-
struct an advantageous folding of the substrings on the left- and right-hand side of
this point subsequently. This will eventually result in a staircase-like arrangement
of odd ones on one side and even ones on the other side.

Newman established the following result to guarantee the existence of an ap-
propriate folding point.

Lemma 4.1 (Newman [10], Lem. 2.2). Let p = p0 . . . pm−1 be a string over {0, 1},
where p0 = pm−1 = 0 and evens(p) = odds(p), and let p◦ denote the corresponding
loop. Then there exists a point px such that if we go around p◦ in one direction
(i.e., either clockwise or counter-clockwise) starting at px to any point pj, then

odds(pxpx+1 . . . pj) ≥ evens(pxpx+1 . . . pj),
and if we go around p◦ in the other direction from px−1 to any point pk, then

evens(px−1px−2 . . . pk) ≥ odds(px−1px−2 . . . pk).
(Here, the indices j and k are considered to be modulo m.)

Informally, we may simply say that there exists a point such that going into
one direction starting from that particular point, we will always meet at least as
many odd ones as even ones, and going into the other direction, we will always
meet at least as many even ones as odd ones at any point.

Having determined such a point as described in the previous lemma, we may
use it as a folding point for the algorithm. Before we actually start with the
presentation of the algorithm we introduce some notation that will allow us to
specify the folding.

Let p = p0 . . . pm−1 be our input string over {0, 1} and p◦ the corresponding
loop.

Firstly, without loss of generality, we can assume that there is a point px as in
Lemma 4.1, such that going in clockwise direction we have odds(pxpx+1 . . . pj) ≥
evens(pxpx+1 . . . pj), for any point pj , and vice versa for the counter-clockwise
direction.

By the ith odd one we denote the i-th odd one starting from px+1 going in
clockwise direction. Similarly, by the ith even one we denote the i-th even one
starting from px−2 going in counter-clockwise direction3. We denote the substring
starting at the element of p◦ directly following the (i − 1)th odd one up to and
including the ith odd one by Sodd(i). Its corresponding length is denoted as
lodd(i)+1. Similarly, we denote the substring starting at the element of p◦ directly
following the (i − 1)th even one up to and including the ith even one by Seven(i).
Its corresponding length is denoted as leven(i) + 1. Note that lodd(i) and leven(i)
thus denote the number of intermediate positions between two consecutive odd
(respectively even) ones, and are always odd integers. Furthermore, by oddpos(i)
we map the ith odd one to its actual position in the string, and in the same way
we denote by evenpos(i) the mapping of the ith even one to its actual position.
Figure 5 illustrates these notations.

3We use this particular definition for the ith ones here, since px−2 and px+1 will be paired
in Newman’s algorithm.
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px−2

px−1
px

px+1

px+2

(j − 1)th odd one

jth odd one

(i − 1)th even one

ith even one

EVEN side
evens(pxpx−1 . . . py) ≥
odds(pxpx−1 . . . py)

ODD side
odds(pxpx+1 . . . py) ≥
evens(pxpx+1 . . . py)

Seven(i)

Sodd(j)

Figure 5. Illustration of the notions required in the presentation
of Newman’s algorithm.

Algorithm 1 Newman’s algorithm

Input: A loop p◦ over {0, 1}.
(1) For p◦ compute a folding point px as considered in Lemma 4.1.
(2) Arrange the symbols arround px (i.e., px−2, px−1, px, px+1) according to

Figure 6. Set i := 1 and j := 1 (these will be the counters for walking in
counter-clockwise and clockwise direction, respectively).

(3) Distinguish four cases according to the lengths of Seven(i) and Sodd(j).
a If leven(i) = lodd(j) = 1, then fold Seven(i), Seven(i + 1) and

Sodd(j), Sodd(j + 1) according to Figure 7.
Set i := i + 2 and j := j + 2.

b If leven(i) ≥ 3 and lodd(j) ≥ 3, then perform essentially the same fold-
ing of Seven(i), Seven(i+1) and Sodd(j), Sodd(j +1) as in the previous
case, additionally arranging the intermediate symbols in appropriate
side arms (see Fig. 8).
Set i := i + 2 and j := j + 2.

c If leven(i) = 1 and lodd(j) ≥ 3, then fold Seven(i), Seven(i + 1) and
Sodd(j) according to Figure 9.
Set i := i + 2 and j := j + 1.

d If leven(i) ≥ 3 and lodd(j) = 1, then fold Seven(i) and Sodd(j), Sodd(j+
1) according to Figure 10.
Set i := i + 1 and j := j + 2.

(4) Iterate the folding process described in Step 2 until Seven(i) and Sodd(j)
overlap at some point.
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px−2

px−1 px

px+1

Figure 6. Arrangement of the symbols around the folding point px.

We are now ready to present Newman’s algorithm. As usual, we describe the
algorithm in terms of folding patterns to prevent an irksome and confusing index-
based notation. Although Newman’s algorithm was originally not designed to
account for diagonals, we include also diagonal contacts in the drawings of the
folding patterns.

There is no special reason for pairing px−2 and px+1 instead of px−1 and px+2

in Step 2. However, a pairing of px−1 and px+1 is impossible due to the parity
constraints in L�, so without loss of generality, we have to decide for one of both.

The situation described in the cases 3(a) and 3(b) is quite advantageous. Un-
fortunately, it is not clear how to come up with an equally favorable folding for
the case, where the number of intermediate zeros is one in one of the considered
substrings and greater or equal 3 in the other one (cases 3(c) and 3(d)).

Next, we follow the same lines in the analysis of Newman’s algorithm as in [10],
but additionally account for diagonal edges.

Lemma 4.2. Newman’s algorithm asymptotically guarantees an overall contact
weight of at least 2

3µ + 1
3αµ for the α-DC-HP2d problem.

Proof. Let p = p0 . . . pm−1 be a string over {0, 1} and p◦ its corresponding loop.
Denote by i∗ and j∗ the values of i and j after the last iteration of Newman’s
algorithm on the input p◦, i.e., i∗ and j∗ are the first values for i and j such that
px−2px−3 . . . pevenpos(i∗) and px+1px+2 . . . poddpos(j∗) overlap each other.

Before we go into the details of the proof, we will first give a informal outline
and describe some necessary considerations. Our plan is to estimate the number of
odd ones participating in the folding and thus contributing to the overall contact
weight. To do so, we have to look at all odd ones that are considered by the
folding performed by Newman’s algorithm, these are roughly the odd ones in
px+1px+2 . . . poddpos(j∗). But for a rigorous estimation we have to take into account
that, due to the overlapping of px+1px+2 . . . poddpos(j∗) and px−2px−3 . . . pevenpos(i∗)

some odd ones “at the end” of px+1px+2 . . . poddpos(j∗) might not contribute to the
folding. In particular, poddpos(j∗) cannot be paired by the algorithm, since it occurs
inside px−2px−3 . . . pevenpos(i∗). Moreover, also poddpos(j∗−1) might be unpaired if
the situation of Case (a) or Case (b) occurs but Seven(i+1) and Sodd(j+1) already
overlap in some point. Then i∗ = i+1 and j∗ = j+1 and we do not pair j = j∗−1.

Furthermore, to estimate the number of odd ones in px+1px+2 . . . poddpos(j∗) with
respect to the overall number of odd ones or to µ (which will eventually help us to
establish an approximation ratio), we have to account for the situation around the
folding point, too. Here, Newman’s algorithm folds the positions px−2, px−1, px,
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(i − 1)th even one (j − 1)th odd one

Figure 7. Folding pattern if both leven(i) = lodd(j) = 1.

(i − 1)th even one (j − 1)th odd one

Figure 8. Folding pattern if both leven(i) ≥ 3 and lodd(j) ≥ 3.

and px+1 according to Figure 6. At most two of these positions may be odd ones
and therefore we have to consider them in our estimation.

Now, after estimating the number of odd ones participating in the folding, we
will have a closer look on the types of the foldings and determine the corresponding
contact weight for each type and sum up. We will finally express the estimated
contact weight in terms of odds(p◦) and ignore all additive constants, since we are
interested in the asymptotic amount of contact weight only.

Now, let us continue with the proof. From the setting of i∗ and j∗, we can
conclude that at least odds(px+1px+2 . . . poddpos(j∗)) − 2 odd ones participate in
some contacts. We have to subtract 2, since poddpos(j∗−2) might be the last odd
one (in clockwise direction) that is paired by the algorithm. On the other hand,
at most odds(px−2px−3 . . . pevenpos(i∗)) + 1 odd ones potentially do not participate
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in any contacts. Here, we added 1 to account for the fact that either px−1 or
px might be an odd one, too. The overlapping of px−2px−3 . . . pevenpos(i∗) and
px+1px+2 . . . poddpos(j∗) guarantees that we do not underestimate the number of
unpaired odd ones.

By Lemma 4.1 we know

odds(px−2px−3 . . . pevenpos(i∗)) ≤ evens(px−2px−3 . . . pevenpos(i∗)). (1)

Furthermore, since px+1px+2 . . . poddpos(j∗) and px−2px−3 . . . pevenpos(i∗) are over-
lapping and either px−1 or px might be an odd one, too, the following holds

odds(p◦) ≤ odds(px+1px+2 . . . poddpos(j∗))+odds(px−2px−3 . . . pevenpos(i∗))+1. (2)

Combining equations (1) and (2), we obtain

odds(p◦) ≤ odds(px+1px+2 . . . poddpos(j∗)) + evens(px−2px−3 . . . pevenpos(i∗)) + 1.
(3)

In the following analysis, we will pair together as many of the foldings of type (c)
and (d) as possible and denote these as type (c-d) folds. We assume without loss
of generality that u type (c) folds remain unpaired. (The case of unpaired type (d)
folds is symmetric.) Then, the number of odd ones participating in type (a), (b),
or (c-d) folds is

odds(px+1px+2 . . . poddpos(j∗)) − 2 − 2u, (4)

since there occur 2 odd ones in each type (c) fold.
In these folds of type (a), (b), or (c-d), the number of odd ones matches the

number of even ones. Moreover, there are u additional even ones involved in
type (c) folds. Again, we have to take into account that two even ones may
remain unconsidered in px−2px−3 . . . pevenpos(i∗) due to its overlapping with
px+1px+2 . . . poddpos(j∗). Hence,

evens(px−2px−3 . . . pevenpos(i∗)) ≤ odds(px+1px+2 . . . poddpos(j∗)) − u + 2. (5)

Combining equations (3) and (5) yields

odds(p◦) ≤ odds(px+1px+2 . . . poddpos(j∗)) + odds(px+1px+2 . . . poddpos(j∗)) − u + 3.
(6)

This is equivalent to

odds(px+1px+2 . . . poddpos(j∗)) ≥ odds(p◦)
2

+
u

2
− 3

2
· (7)

Next, we consider how much contact weight is contributed by the odd ones in
px+1px+2 . . . poddpos(j∗). For the two odd ones participating in a type (a) or type (b)
fold, we obtain a contact weight of 6 + 4α, since the folding establishes three
horizontal/vertical contact edges and two diagonal contact edges. For the three
odd ones participating in a type (c-d) fold, we obtain a contact weight of 8 + 4α.
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(i − 1)th even one (j − 1)th odd one

Figure 9. Folding pattern if leven(i) = 1 and lodd(j) ≥ 3.

(i − 1)th even one (j − 1)th odd one

Figure 10. Folding pattern if both leven(i) ≥ 3 and lodd(j) = 1.

In these cases we can thus guarantee a contact weight of 6+4α
2 = 3+2α or 8+4α

3 =
8
3 + 4

3α for each odd one on average.
For the u remaining type (c) folds, we achieve a contact weight of 2+α for each

odd one. Furthermore, in each of the u remaining folds of type (c), two odd ones
occur.

This implies that we can guarantee at least a contact weight of

(
8
3

+
4
3
α

)
· (odds(px+1px+2 . . . poddpos(j∗)) − 2 − 2u

)
+ 2 · (2 + α)u. (8)

Estimating odds(px+1px+2 . . . poddpos(j∗)) according to equation (7), we can
bound this value from below as follows:(

8
3

+
4
3
α

)
· (odds(px+1px+2 . . . pj∗) − 2 − 2u) + 2 · (2 + α)u

≥
(

8
3

+
4
3
α

)
·
(

odds(p◦)
2

+
u

2
− 2u − 7

2

)
+ 2 · (2 + α)u

=
4
3
odds(p◦) − 4u +

2
3
αodds(p◦) − 2αu + 4u + 2αu − 7

2

(
8
3

+
4
3
α

)
·
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As we consider the amount of contact weight only asymptotically, we can skip the
additive constant − 7

2

(
8
3 + 4

3α
)

and obtain an asymptotical contact weight of at
least

4
3
odds(p◦) +

2
3
αodds(p◦).

Since we assumed odds(p◦) = evens(p◦) we can set odds(p◦) = µ
2 , leading to an

overall contact weight achieved by Newman’s algorithm of

2
3
µ +

1
3
αµ

which completes the proof. �

Theorem 4.3. Newman’s algorithm is an asymptotic approximation algorithm for
the α-DC-HP2d problem with a ratio of

(
4α · n + min{2µ, 2n− 2k · min{ 2

3 , α}}
2
3µ + 1

3αµ

)
·

Proof. To compute the approximation ratio of Newman’s algorithm, we compute
the fraction of the upper bound from Theorem 3.6 and the overall contact weight
guaranteed by the algorithm according to Lemma 4.2 and obtain a ratio of

4α · n + min{2µ, 2n− 2k · min{ 2
3 , α}}

2
3µ + 1

3αµ
· �

To give an idea of the ratio established above, we now discuss the corresponding
ratios for specific values of α and µ.

• Clearly, if µ = 0, i.e., if there cannot be any horizontal/vertical contacts
at all, the approximation ratio is infinite.

• For α = 0, the α-DC-HP2d problem corresponds to the original HP prob-
lem and the approximation ratio is 3 (as already shown in [10]).

• For µ = n, we can guarantee a ratio of 6+12α
2+α which is worst for α = 1 and

yields a ratio of 6 in this case.
Extending the analysis of Newman’s algorithm to concern all ones included in the
input and not to assume odds(p◦) = evens(p◦), appears to be quite problematic
due to the following reasons.

• Applying the folding strategy of Newman’s algorithm inevitably implies
that only min{odds(p◦), evens(p◦)} ones are considered.

• Refining the analysis with respect to the block length seems to be a rea-
sonable idea, since longer blocks of consecutive ones that participate in
the staircase-like folding, will imply even more contact weight. Neverthe-
less, it remains unclear, how we can guarantee that certain blocks really
participate in the folding. However, it appears to be a suitable heuristic
to obtain the condition min{odds(p◦), evens(p◦)} of the algorithm by ig-
noring singletons first and longer blocks after that. Because in each block
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that is not a singleton both, odd and even ones will occur, we will obtain
an improved contact weight in this case independent whether the block
belongs to the “odd side” or to the “even side”.

4.3. Algorithm Meander

In this section, we present an alternative approach for computing a good folding
for the α-DC-HP2d problem. This algorithm is not based on the computation of
a folding point, but computes a folding while traversing the input string and
analyzing the particular situation locally.

Algorithm 2 Meander

Input: A string p over {0, 1}.
Execute: Walk along p and embed each long block (of length at least 4)

in a meander-like way into two or three consecutive rows of the grid such
that there are either two or three consecutive ones in the leftmost and
rightmost column of the embedding of this block as shown in Figure 11m
and n. Embed each shorter block into a single column of the grid. Place
consecutive blocks next to each other as shown in Figure 11a to l, arranging
the zeros in appropriate side-arms.

Lemma 4.4. For a given input p, algorithm Meander guarantees an overall con-
tact weight of at least l1 · 2α + (n− l1) ·min{1+ 9

5α, 4
3 + 2

3α}, where l1 denotes the
number of singletons, and n denotes the overall number of ones in p.

Proof. Let in the following a transition denote a pair of embedded consecutive
blocks. To prove this lemma, we count the average contact weight contributed by
a block participating in the transitions shown in Figure 11a–l. Here, we always
assume a worst-case scenario.

Let us consider the different types of blocks separately.

(1) Let x denote a singleton. It is quite obvious in this case that, with respect
to the achieved contact weight, the worst-case in the folding performed by
algorithm Meander occurs, if x is framed by two other singletons which
are both connected to x by an odd number of intermediate zeros. In this
case x contributes a contact weight of 2α (see Fig. 11b).

(2) Let y denote a pair of ones. In this case, we have to consider different kinds
of transitions, namely all types of transitions where a pair may participate
in, i.e., those shown in Figure 11c, d, g–j. Actually, we would have to
consider all possible combinations of these cases for the transitions of the
right- and left-hand side of y. But, since we are only interested in the
worst-case situation, we can restrict ourselves to the consideration of the
same transitions on both sides. The worst case there is clearly also the
worst case concerning all possible combinations.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n)

Figure 11. Transitions between blocks; solid lines denote bind-
ing edges, dashed lines denote contact edges, and parts of the
embedding which are not considered (including all zeros) are in-
dicated by dotted lines.

• y is framed by two transitions of type Figure 11c or d.
We determine the contribution to the overall contact weight of this
particular transition and then multiply it by two to account for the
second transition. The ones in y are incident to contacts of total
weight 1+α. Moreover, the involved singleton contributes also 1+α,
but according to the worst-case scenario discussed in the previous
case, we only counted α for this transition of this singleton. Thus,
we may count an additional 1 for the contact weight of y in this case.
Summing up, y contributes 2 + α for each transition it participates
in, and hence 2 · (2 + α) altogether. Finally, on average each one in y
contributes 1

2 · 2 · (2 + α) = 2 + α.
• y is framed by two transitions of type Figure 11g.

Here, the ones in y contribute 2 · (1 + α) for each transition. Mul-
tiplying by two (to account for two transitions) and dividing by two
(to compute the average) will give again a contact weight of 2 ·(1+α)
guaranteed by each one in y in this case. (As no singleton participates
in this transition, we do not count any additional contact weight.)



394 H.-J. BÖCKENHAUER AND D. BONGARTZ

• y is framed by two transitions of type Figure 11h.
Here, the ones in y contribute 1 + 2α for each transition. Following
the same argument as above, this leads to a contact weight of 1 + 2α
for each one in y on average.

• y is framed by two transitions of type Figure 11i or (j).
Here, the ones in y contribute 2 + 3α for each transition. Following
the same argument as above, this leads to a contact weight of 2 + 3α
for each one in y on average.

This implies that we can guarantee a contact weight of at least

min{2 + α, 2 · (1 + α), 1 + 2α, 2 + 3α} = 1 + 2α

for each one occuring in a pair.
(3) Let z denote a triple of ones. In this case, we have to consider different

kinds of transitions, namely all types of transitions where a triple may
participate in, i.e., those shown in Figure 11e, f, i–l. Again, we only have
to consider pairs of the same transitions to detect the worst-case.

• z is framed by two transitions of type Figure 11e.
Here, the ones in z contribute 1 + α for each transition. Moreover,
for each transition we can guarantee an additional contact weight of
1 for the involved singleton. Thus, both transitions contribute 4+2α
in total. Hence, each one in z contributes 4

3 + 2
3α on average.

• z is framed by two transitions of type Figure 11f.
Here, the ones in z contribute 1 + 2α for each transition. Moreover,
for each transition we can guarantee an additional contact weight of
1 + α for the involved singleton. Thus, both transitions contribute
4 + 6α in total. Hence, each one in z contributes 4

3 + 2α on average.
• z is framed by two transitions of type Figure 11i or j.

Here, the ones in z contribute 2 + 3α for each transition. Thus, both
transitions contribute 4+6α in total. Hence, each one in z contributes
4
3 + 2α on average.

• z is framed by two transitions of type Figure 11k.
Here, the ones in z contribute 3 + 4α for each transition. Thus, both
transitions contribute 6+8α in total. Hence, each one in z contributes
2 + 8

3α on average.
• z is framed by two transitions of type Figure 11l.

Here, the ones in z contribute 2 + 4α for each transition. Thus, both
transitions contribute 4+8α in total. Hence, each one in z contributes
4
3 + 8

3α on average.
For triples of ones, we can thus guarantee a contact weight of at least

min{ 4
3 + 2

3α, 4
3 + 2α, 4

3 + 2α, 4
3 + 8

3α} = 4
3 + 2

3α

for each one on average.
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(4) Let we denote blocks of ones of length m, where m ≥ 4 and m is even (see
Fig. 11m). To compute the average contribution of each one in this case,
we can simply determine the total contribution to the contact weight by
inner ones and then additionally add half of the worst-case contribution
of a pair for each of the two borders. Let therefore cp = 2 + 4α denote the
minimum contribution for a pair of ones(for the whole pair and not for
each one in a pair on average). To easily compute the contributed contact
weight, observe that the folding shown in Figure 11m contains m−2

2 square
shaped regions, and each of these contributes two diagonal contact edges
and one horizontal contact edge. Additionally, we have to consider the
contact edges incident to the borders of the folding. Then, we obtain an
average contact weight of

m−2
2 · (4α + 2) + 2 · 1

2 · cp

m
= 1 + 2α.

(5) Let wo denote blocks of ones of length m, where m ≥ 5 and m is odd (see
Fig. 11n). To compute the average contribution of each one in this case,
we can simply determine the total contribution to the contact weight by
inner ones and then additionally add half of the worst-case contribution
of a pair for one border and half of the worst-case contribution for a triple
for the other border. Let, therefore, cp = 2 + 4α denote the minimum
contribution for a pair (for the whole pair and not for each one in a pair
on average) of ones, and similarly let ct = 4 + 2α denote the minimum
contribution for a triple of ones. Again, we count the number of square
shaped regions in the folding shown in Figure 11n, which is m−3

2 here.
Then, we obtain an average contact weight of

m−3
2 · (4α + 2) + 2α + 1

2 · cp + 1
2 · ct

m
≥ 1 + 2α − 1

5
α = 1 +

9
5
α.

Here, the worst-case occurs for blocks of length 5.

Now, in what follows, we analyze the singletons and non-singletons separately. For
singletons we can in the worst-case only guarantee a contact weight of 2α for each
one. To estimate the least contribution of contact weight made by other blocks,
we have to compute the minimum of all the above computed average contributions
per one, i.e., we have to determine

min
{

1 + 2α,
4
3

+
2
3
α, 1 + 2α, 1 +

9
5
α

}
=

{
1 + 9

5α , if 0 ≤ α ≤ 5
17

4
3 + 2

3α , if 5
17 < α ≤ 1.

Namely, except for singletons, the worst case will either occur for the situation
shown in Figure 11n or for the one shown in Figure 11e, depending on the choice
of α.
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Altogether we can conclude that algorithm Meander guarantees at least an
overall contact weight of l1 ·2α+(n−l1)·min{1+ 9

5α, 4
3 + 2

3α}, where l1 denotes the
number of singletons, and n denotes the overall number of ones in the input. �

Clearly, this is a quite rough estimation and the algorithm will do better in
many cases.

However, a more detailed analysis leads to rather involved complications. So
for instance, if we would consider each type of block and its guaranteed contact
weight separately, thus establishing an overall contact weight of l1 ·2α+ leven · (1+
2α)+ l3 · (4

3 + 2
3α)+ lodd · (1+2α, 1+ 9

5α), where leven, l3, lodd denote the number of
ones in block of even length, the number of ones in triples, and the number of ones
in odd length blocks longer than 5, respectively, this would imply certain ratios
between the number of these blocks that can maximally occur in the folding. This
is due to the observation, that a worst case contribution of e.g. a triple requires
the presence of two bordering singletons, etc. Therefore, as these ratios have a
reasonable influence on the overall contact weight contributed by the folding, it is
necessary to take them into account for identifying the worst case scenario, but
performing such an analysis seems to be rather cumbersome.

Moreover, we have only taken into account the additional contact weights guar-
anteed by neighboring blocks for the case of singletons. Clearly, this analysis might
be extended to other transitions and blocks as well, e.g. if a transition of type 2-3
occurs.

However, both of the suggested improvements will (most probably) not help in
our estimation against the worst-case szenario.

Theorem 4.5. Algorithm Meander is a linear-time δ-approximation algorithm

for the α-DC-HP2d problem, where δ = 1 + 1
α for 0 ≤ α ≤

√
2
5 and δ = 3+6α

2+α for√
2
5 < α ≤ 1.

Proof. The linear running time of algorithm Meander is a direct consequence of
the sequential application of the embedding patterns given in Figure 11a–n.

To compute the approximation ratio of algorithm Meander, we combine the
result from Lemma 4.4 with the upper bound established in Theorem 3.6.

In this way we obtain

4α · n + min{2µ, 2n− 2k · min{ 2
3 , α}}

l1 · 2α + (n − l1) · min{1 + 9
5α, 4

3 + 2
3α} , (9)

where, as usual, k denotes the number of blocks, l1 denotes the number of single-
tons, and n denotes the total number of ones in the given input.

Since µ = 2 · min{odds(p), evens(p)} ≤ 2 · n
2 = n, we can estimate this ratio

from above by

4α · n + 2n− 2k · min{ 2
3 , α}

l1 · 2α + (n − l1) · min{1 + 9
5α, 4

3 + 2
3α} · (10)
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Moreover, the number k of blocks in our input, is at least the number of singletons
l1. This leads to the following upper bound on the ratio

RMeander(n, l1, α) =
4α · n + 2n − 2l1 · min{ 2

3 , α}
l1 · 2α + (n − l1) · min{1 + 9

5α, 4
3 + 2

3α} · (11)

To further simplify this term, we use the abbreviations β = min{α, 2
3} and

γ = min{1 + 9
5α, 4

3 + 2
3α}.

RMeander(n, l1, α) =
4α · n + 2n− 2l1 · β
l1 · 2α + (n − l1) · γ · (12)

We are now looking for the worst-case ratio according to the parameter l1.
To achieve this, we compute the derivative of RMeander(n, l1, α) with respect to l1.
According to the quotient rule this gives

RMeander(n, l1, α)
d

dl1

=
−2β(2l1α + (n − l1) · γ) − (2α − γ)(4nα + 2n − 2l1β)

(l1 · 2α + (n − l1) · γ)2

=
−4l1αβ − 2nβγ + 2l1βγ − 8nα2 − 4nα + 4l1αβ + 4nαγ + 2nγ − 2l1βγ

(l1 · 2α + (n − l1) · γ)2

=
−2nβγ − 8nα2 − 4nα + 4nαγ + 2nγ

(l1 · 2α + (n − l1) · γ)2

=: f.

As the denominator of this fraction is always positive, monotonicity of our original
approximation ratio depends on the sign of the numerator. To determine, in which
intervals the numerator becomes greater than or equal to zero, we distinguish three
cases according to the value of α, which will enable us to determine the values of
β and γ respectively.

Case 0 ≤ α ≤ 5
17

, thus β = α and γ = 1 + 9
5
α.

Plugging in these values of β and γ in the numerator of the fraction denoted
by f and asking whether it is greater equal zero (i.e., whether the approximation
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ratio is increasing in l1), we obtain

−2nα

(
1 +

9
5
α

)
− 8nα2 − 4nα + 4nα

(
1 +

9
5
α

)
+ 2n

(
1 +

9
5
α

)
≥ 0

⇐⇒ −2nα − 18
5

nα2 − 8nα2 − 4nα + 4nα +
36
5

nα2 + 2n +
18
5

nα ≥ 0

⇐⇒ −22
5

nα2 +
8
5
nα + 2n ≥ 0

⇐⇒ α2 − 4
11

α − 5
11

≤ 0

⇐⇒ α2 − 4
11

α +
4

121
− 4

121
− 5

11
≤ 0

⇐⇒
(

α − 2
11

)2

≤ 59
121

·

Thus,

−
√

59
11

≤ α − 2
11

≤
√

59
11

⇐⇒ −
√

59 − 2
11

≤ α ≤
√

59 + 2
11

≈ 0.88.

This implies that RMeander(n, l1, α) from equation (12) is increasing in l1 for
(−

√
59−2
11 ) < 0 ≤ α ≤ 5

17 < (
√

59+2
11 ) and therefore, to determine the worst-case

ratio, we set l1 = n. Then, we obtain

RMeander

(
n, l1 = n, 0 ≤ α ≤ 5

17

)
≤ 4α · n + 2n − 2n · α

n · 2α

=
2nα + 2n

2nα

= 1 +
1
α
·

Thus, the approximation ratio for α → 0 tends to infinity, which is what we al-
ready expected since in this case algorithm Meander might only guarantee diagonal
contacts.

Case 5
17

< α ≤ 2
3
, thus β = α and γ = 4

3
+ 2

3
α.

Plugging in these values of β and γ in the numerator of the fraction denoted
by f and asking whether it is greater equal zero (i.e. whether the approximation
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ratio is increasing in l1), we obtain

−2nα

(
4
3

+
2
3
α

)
− 8nα2 − 4nα + 4nα

(
4
3

+
2
3
α

)
+ 2n

(
4
3

+
2
3
α

)
≥ 0

⇐⇒ −8
3
nα − 4

3
nα2 − 8nα2 − 4nα +

16
3

nα +
8
3
nα2 +

8
3
n +

4
3
nα ≥ 0

⇐⇒ −20
3

nα2 +
8
3
n ≥ 0

⇐⇒ α2 − 2
5
n ≤ 0.

Thus,

−
√

2
5
≤ α ≤

√
2
5
·

This implies that RMeander(n, l1, α) from equation (12) is increasing in l1 for(
−
√

2
5

)
< 5

17 < α ≤
√

2
5 <

(
2
3

)
and decreasing in l1 for

√
2
5 < α ≤ 2

3 . Therefore,
we distinguish these two intervals and determine the worst-case ratio for the first
one setting l1 = n. Then, we obtain

RMeander

(
n, l1 = n,

5
17

< α ≤
√

2
5

)
≤ 4α · n + 2n − 2n · α

n · 2α

=
2nα + 2n

2nα

= 1 +
1
α

as above.
For the second one, we set l1 = 0 and obtain

RMeander

(
n, l1 = 0,

√
2
5

< α ≤ 2
3

)
≤ 4α · n + 2n

n 4
3 + n 2

3α
(13)

=
3 + 6α

2 + α
· (14)

Finally, we have to consider the remaining case.

Case 2
3

< α ≤ 1, thus β = 2
3

and γ = 4
3

+ 2
3
α.

Plugging in these values of β and γ in the numerator of the fraction denoted
by f and asking whether it is greater equal zero (i.e. whether the approximation



400 H.-J. BÖCKENHAUER AND D. BONGARTZ

ratio is increasing in l1), we obtain

−2n
2
3

(
4
3

+
2
3
α

)
− 8nα2 − 4nα + 4nα

(
4
3

+
2
3
α

)
+ 2n

(
4
3

+
2
3
α

)
≥ 0

⇐⇒ −16
9

n − 8
9
nα − 8nα2 − 4nα +

16
3

nα +
8
3
nα2 +

8
3
n +

4
3
nα ≥ 0

⇐⇒ 8
9
n +

16
9

nα − 16
3

nα2 ≥ 0

⇐⇒ α2 − 1
3
α − 1

6
≤ 0

⇐⇒ α2 − 1
3
α +

1
36

− 1
36

− 1
6
≤ 0

⇐⇒
(

α − 1
6

)2

− 7
36

≤ 0.

Thus,

−
√

7
36

≤ α − 1
6

≤
√

7
36

⇐⇒ −1 −√
7

6
≤ α ≤ 1 +

√
7

6
·

As 1+
√

7
6 < 2

3 this implies that RMeander(n, l1, α) from equation (12) is decreasing
in l1 for 2

3 < α ≤ 1. Therefore, we obtain the worst-case by setting l1 = 0, yielding

RMeander

(
n, l1 = 0,

2
3

< α ≤ 1
)

≤ 4α · n + 2n
4
3n + 2

3nα

=
3 + 6α

2 + α
·

This completes the proof. �

According to the approximation ratios determined in the previous theorem, we
can directly infer the following approximation ratios for particular values of α.

Corollary 4.6. For particular values of α, algorithm Meander guarantees the
following approximation ratio �(α):

α α → 0 α = 1
4 α = 5

17 α = 1
2 α =

√
2
5 α = 2

3 α = 1

�(α) → ∞ 5 4.4 3 1 +
√

5
2 ≈ 2.58 2.625 3

In particular, according our estimation, the minimal approximation ratio is

achieved by algorithm Meander for α =
√

2
5 . �
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Please note that we estimated the overall contact weight achieved by algorithm
Meander quite roughly in the previous proof, since we considered the worst-case
complexity. On the other hand, the algorithm will perform significantly better for
many inputs.

Moreover, one might come up with more clever folding strategies for long se-
quences of ones guaranteeing more contacts. However, since the worst-case ap-
proximation ratio is essentially determined by very short blocks of ones, we will
not be able to prove a better approximation guarantee in general, while there is
no doubt that this would be a useful heuristic modification of the algorithm.

4.4. Comparing Newman’s algorithm to algorithm Meander

According to Theorem 4.3 and Lemma 4.4, Newman’s algorithm improves over
algorithm Meander if

µ ≥ l1 · 2α + (n − l1) · min{1 + 9
5α, 4

3 + 2
3α}

2
3 + 1

3α
·

For the case α = 0 this implies that µ ≥ 3
2 (n − l1). Thus, Newman’s algorithm

outperforms algorithm Meander only if the number of singletons is quite high even
in this case.

An interesting difference between the two studied algorithms besides their ap-
proximation ratio is that Newman’s algorithm is folding-point based, which is a
kind of global property of the input utilized by the algorithm. The aim is to find
the best point to “cut” the input string and to align the resulting two strands to
each other.

On the other hand, algorithm Meander focusses on local properties and tries
to compute a folding optimizing local regions of the input. Moreover, algorithm
Meander considers every one in the input and does not restrict itself to horizon-
tal/vertical contacts, while Newman’s algorithm only considers ones that might
establish horizontal/vertical contacts (which is not surprising since Newman’s al-
gorithm was originally designed for the HP problem, where we ignore diagonal
contacts at all).

Therefore, a further investigation and combination of the results of both algo-
rithm might yield valuable insights in the structure of the corresponding protein.

5. Conclusion

There are numerous issues for further research in this area. On the theoretical
side, for many problems their complexity, in particular with respect to approxima-
tion, remains unclear. Moreover, there is a practical need not only for improved
algorithms but also for further refined models to successively come closer to the
real problem setting. For example, it is straightforward to extend the α-DC-HP2d

problem to the 3-dimensional case and to additionally consider also spatial diago-
nals as potential contact edges. In this context it would be meaningful to introduce
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a further parameter β to measure the binding forces along these spatial contacts.
A possible approach would also be the introduction of vertex weights to account
for the different hydrophobicity of the amino acids.
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