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Abstract. The specification of the data structures used in EAT, a
software system for symbolic computation in algebraic topology, is
based on an operation that defines a link among different specifica-
tion frameworks like hidden algebras and coalgebras. In this paper,
this operation is extended using the notion of institution, giving rise
to three institution encodings. These morphisms define a commutative
diagram which shows three possible views of the same construction,
placing it in an equational algebraic institution, in a hidden institution
or in a coalgebraic institution. Moreover, these morphisms can be used
to obtain a new description of the final objects of the categories of al-
gebras in these frameworks, which are suitable abstract models for the
EAT data structures. Thus, our main contribution is a formalization
allowing us to encode a family of data structures by means of a single
algebra (which can be described as a coproduct on the image of the
institution morphisms). With this aim, new particular definitions of
hidden and coalgebraic institutions are presented.
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1. Introduction

EAT (effective algebraic topology) [25] is a software system developed by Ru-
bio and Sergeraert. It is devoted to symbolic computation in algebraic topology.
Particularly, it carries out calculations of homology groups of complex topological
spaces, namely iterated loop spaces. By means of EAT, some homology groups
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that had never been obtained with any other method, neither theoretical nor auto-
matic, have been computed (therefore the corresponding topological results have
not been confirmed, but neither refuted; some examples can be found in [24] or
[26]). In view of the obtained results, the formal analysis of the program might
be interesting, as even if it does not lead to a complete proof of the program cor-
rectness, at least it would allow for some kind of formal reasoning on the internal
calculation processes of this software system.

In particular, first we studied one of the most important aspects of EAT, that
is, its data structures. In that study [21, 22] we found that there are two differ-
ent layers of data structures in EAT. In the first layer, one finds the usual data
structures. For instance, the system handles integer numbers, (finite) lists or trees
of symbols (to represent linear combinations or polynomials) and so on. In the
second layer, one must deal with algebraic structures like (graded) groups, rings,
simplicial sets or chain complexes, whose elements are data that belong to the
first layer. Besides, two additional features enrich even more the problem. On
the one hand, structures of the two layers have to be created and handled at run-
time. This should be compared with other mathematical packages (in the field of
commutative algebra or in general systems such as Mathematica or Maple) where
the two above mentioned layers obviously exist, but where only one (or very few)
algebraic structure is created in each session (in a pre-processing time, so to speak)
and then a massive work on usual (first layer) data is carried out inside this struc-
ture. In contrast, in a typical calculation with EAT, several hundreds of algebraic
structures must be created and handled (see examples in [25, 26]). On the other
hand, algorithms in algebraic topology use, in an essential way, infinite structures
as intermediaries to compute the sought (finite) results. (The loop space is an
important construction of this kind [25].) Let us stress that these infinite data
structures are not the usual sequential or hierarchical structures, like infinite lists
or streams or infinite trees, where canonical ways of traversing the structure are
known. In EAT, one must implement infinite groups, rings, chain complexes and
so on. For these structures, behaviour and observation are more important than
storage and traversing aspects. The way chosen by Sergeraert to develop EAT was
based in an intensively functional programming use (see [21,25]). In this program,
an element of the second layer is encoded by means of a record of common lisp
functions which has a field for each operation of the algebraic structure which is
been represented. The elements of an algebraic structure (which is represented by
an instance of the functional record) are elements of the first layer. These elements
are fixed or constructed from fixed elements, and so they do not require an explicit
storage.

These particular characteristics imply that, even if for first-layer data struc-
tures the usual algebraic specification techniques (the initial algebra construction,
in particular) suffice for the modelling task, for second-layer data structures, a
research effort is required, since it is not possible to apply directly known tech-
niques.
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We first realized that in a system such as EAT we are not only implementing an
abstract data type, or, shortly, an ADT (as a group, for instance), but also deal-
ing with implementations of ADTs (several hundreds of implementations of the
ADT group would populate the program memory). In [21] a construction, which is
called imp operation, was defined. This construction models the skip from a kind
of structures to families of these structures. Roughly speaking, the syntactical part
of this construction consists in adding to a signature Σ a new sort which is incor-
porated as first argument to each operation of the signature (the new signature is
denoted by Σimp). Then, a Σimp-algebra defines a family of Σ-algebras (the carrier
set for the distinguished sort acts as an index for this family). Besides, working
with implementations in [21] we were able to prove that EAT (second-layer) data
structures are as general as possible, in the sense that they are ingredients of final
objects in certain categories of ADT implementations. Later on, led by this char-
acterization of EAT data structures, in [22] we reinterpreted our results in terms of
hidden algebras [15] and coalgebras [27], technologies that have been presented in
the literature as related to the object-oriented paradigm [14,18, 27]. This led us to
a purely (co)algebraic setting, without taking into account implementation or pro-
gramming language issues. So, through the imp operation different specification
frameworks, namely the equational algebraic specification, the hidden specification
and the coalgebraic frameworks, were related.

In this work we try to extend our results by using the terminology of the
institutions [13] (a notion that summarizes the idea of an abstract framework
of specification) such that the imp operation defines relationships among the in-
stitutions that correspond to the aforementioned object-oriented frameworks of
specification. The relations defined by the imp operation among these different
specification contexts will give rise to a commutative diagram of institution encod-
ings, which displays different forms to understand this construction, either placing
it in the equational algebraic institution, in a (redefined) hidden institution or in a
new institution for a particular kind of coalgebras. As a result, we obtain a formal-
ization of a coding of a set of Σ-algebras by a single Σimp-algebra. Moreover, this
Σimp-algebra can be described as the coproduct of a set of “trivial” Σimp-algebras,
which corresponds to the set of Σ-algebras that is being coded.

The interest of this work is twofold. From the algebraic specification perspec-
tive, this paper can be understood as a report on the application of the institution
notion in a field (namely, symbolic computation) quite distant from the context in
which the concept was introduced. In this work, we show different problems that
we have found in the direct use of institutional machinery for the formalization
of actual symbolic computation systems and how these problems can be tackled.
Our study shows this approach suffers from the gap between the generality of the
institutional framework and the particularity of the algebraic structures which are
under consideration. One consequence of this is the institutional framework is
stretched in such a way that in some cases we will use degenerated parts of some
institutions and in other cases we will need to introduce “ad-hoc” institutions.
Another consequence is that the object-oriented flavour of the institutions could
be lost in these degenerated cases.
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From the symbolic computation point of view, it shows an innovative way in
which the specification of data structures can be carried out (since, up to the
authors’ knowledge, the only occurrence of institutions in relation with symbolic
computation is in the work by Calmet et al. [4,5], where, in any case, the objectives
were quite different).

The paper is organized as follows. In the section below some definitions and
examples that will be used later on in this paper are introduced. In Section 3 the
imp construction is briefly presented. The most important results of this work
are included in Section 4. In that section, a commutative diagram of institution
encodings is built. Section 5 is devoted to some relationships between our con-
structions an other hidden and coalgebraic institutions that have been developed
in the literature. The paper ends with a section of conclusions and future work.

2. Preliminaries

In order to make the reading of the paper easier, we start by recalling some
terminology on specifications [23] and institutions [13].

Definition 2.1 (signature and algebra). A signature Σ is a pair (S, Ω) of sets,
whose elements are called sorts and operations respectively. Each operation ω ∈ Ω
has associated a (n + 1)-tuple s1, . . . , sn, s ∈ S with n ≥ 0 (it is represented by
ω : s1 . . . sn → s). In the case n = 0, the operation ω : → s is called a constant of
sort s.

Let Σ = (S, Ω) and Σ′ = (S′, Ω′) be two signatures. A signature morphism
µ : Σ → Σ′ from Σ to Σ′ is a pair µ = (µS : S → S′, µΩ : Ω → Ω′) of maps
such that for each operation ω : s1 . . . sn → s ∈ Ω, there exists an operation
ω′ : µS(s1) . . . µS(sn) → µS(s), with µΩ(ω) = ω′. If no ambiguities arise we may
write µ instead of µS or µΩ.

Let Σ = (S, Ω) be a signature. A Σ-algebra A assigns a set As to each sort s ∈ S
(As is called the carrier set for the sort s) and a total function ωA : As1 × · · · ×
Asn → As to each operation ω : s1 . . . sn → s ∈ Ω.

Let Σ = (S, Ω) be a signature and let A, B be two Σ-algebras. A Σ-homomor-
phism h : A → B from A to B is a family {hs : As → Bs}s∈S of maps such that
for each ω : s1 . . . sn → s ∈ Ω, the following condition holds:

hs(ωA(a1, . . . , an)) = ωB(hs1(a1), . . . , hsn(an))

for all ai ∈ Asi , i = 1, . . . , n.
The Σ-algebras and Σ-homomorphisms define a category Alg(Σ).

Definition 2.2 (terms). Let Σ = (S, Ω) be a signature and let X = (Xs)s∈S be
a set of variables for Σ. The set of Σ(X)-terms, denoted by TΣ(X), is the family
of sets (TΣ(X)s)s∈S which are defined by: Xs ⊆ TΣ(X)s, if ω is a constant of sort
s then ω ∈ TΣ(X)s, and, finally, if ω : s1 . . . sn → s ∈ Ω, n ≥ 1, and ti ∈ TΣ(X)si

,
i = 1, . . . , n, then ω(t1, . . . , tn) ∈ TΣ(X)s. An element of TΣ(X)s is called a Σ(X)-
term of sort s.
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An institution tries to gather all the components present in a specification
framework: signatures, sentences, models and satisfaction relation. From now on
in this paper, Set will denote the category of sets and maps and Cat will denote
the category of categories and functors (in order to avoid foundational problems
related to Cat we can restrict our work to locally small categories [1]). Moreover,
if C is a category Cop denotes the opposite category of C.

Definition 2.3 (institution). An institution I consists of:
(1) a category SIGI , whose objects are called signatures ;
(2) a functor SenI : SIGI → Set, giving for each signature Σ a set whose

elements are called Σ-sentences ;
(3) a functor ModI : SIGop

I → Cat, giving for each signature Σ a cate-
gory whose objects are called Σ-models, and whose arrows are called Σ-
morphisms ; and

(4) for each Σ ∈ Obj(SIGI), a relation |=I
Σ⊆ Obj(ModI(Σ)) × SenI(Σ),

called Σ-satisfaction,
such that for all the morphisms µ : Σ → Σ′ in SIGI , the satisfaction condition

A′ |=I
Σ′ SenI(µ)(e) iff ModI(µ)(A′) |=I

Σ e

holds for each A′ ∈ Obj(ModI(Σ′)) and each e ∈ SenI(Σ).

It is natural to establish a relationship between two institutions through the
corresponding notion of morphism. An institution morphism is given by a func-
tor between the categories of signatures and two natural transformations (one on
sentences and the other on models) such that the satisfaction relations are pre-
served. In the usual notion of morphism, the transformation for the sentences
“goes” in the opposite direction to the relationship between signatures and mod-
els. Nevertheless, there are examples where it is more natural to consider these
three components as going in the same direction. This originates the concept of
institution encoding. We introduce the definition of this concept as it was pre-
sented by Tarlecki in [28]. For a survey on different notions of morphisms between
institutions, see [17].

Definition 2.4 (institution encoding). Let I and I′ be institutions. An institution
encoding from I to I ′ consists of:

(1) a functor Φ: SIGI → SIGI′ ;
(2) a natural transformation α : SenI ⇒ SenI′ ◦ Φ; and
(3) a natural transformation β : ModI ⇒ ModI′ ◦ Φop

such that the following satisfaction condition holds:

A |=I
Σ e iff βΣ(A) |=I′

Φ(Σ) αΣ(e)

for each signature Σ, each Σ-model A and each Σ-sentence e from I.

The first institution we are going to introduce represents the equational al-
gebraic specification framework [13]. This institution will be called equational
algebraic institution and we will use E to denote it.
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Example 2.5. The equational algebraic institution E is given by:
• the category SIGE is the category whose objects are the signatures and

whose morphisms are the signature morphisms;
• the functor SenE : SIGE → Set gives for each signature Σ the set of

algebraic equations ∀X.t = t′, where X is a set of variables for Σ and t,
t′ are Σ(X)-terms of the same sort, and for each signature morphism the
translation along this morphism which is defined essentially by replacing
the operation names as indicated by this morphism;

• the functor ModE : SIGop
E → Cat gives for each signature Σ the category

Alg(Σ) of Σ-algebras, and for each signature morphism the reducts along
this morphism which is defined in the usual way;

• for each signature Σ, the satisfaction relation |=E
Σ is the usual equational

satisfaction relation, which comes from the interpretation of the Σ-terms
in the Σ-algebras.

The following example of institution is related to the hidden specification [15] and
it will be called hidden institution [14].

Definition 2.6 (hidden signature). Let V Σ = (V S, V Ω) be a signature. Let us
fix a V Σ-algebra DV Σ and let us include in V Ω, as constants, the elements of
the carrier sets of DV Σ which do not correspond to constants previously in V Ω.
The elements of V S are called visible sorts, the elements of V Ω are called visible
operations and the V Σ-algebra DV Σ is called data domain. A hidden signature,
on V Σ and DV Σ, is a signature HΣ = (S, Ω) such that S = HS � V S, Ω = HΩ �
V Ω (the elements of HS and HΩ are called hidden sorts and hidden operations,
respectively), and for each operation ω : s1 . . . sn → s in HΩ there is at least one
hidden sort in {s1, . . . , sn, s} and at most one hidden sort in {s1, . . . , sn}.

An operation ω : s1 . . . sn → s ∈ HΩ is called constructor if s ∈ HS and
deconstructor otherwise. Besides, a constructor is called constructor from data
when s1, . . . , sn are visible sorts, constructor from objects (and data) when there
is one hidden sort among the arguments that is different from s, and updating
operation otherwise. In this paper, we are going to use the terminology for the
hidden operations introduced in [22], which does not agree with the usual one in
the field of hidden specification [15].

Definition 2.7 (hidden signature morphism). Let HΣ and HΣ′ be two hidden
signatures, on V Σ and DV Σ. A hidden signature morphism µ : HΣ → HΣ′ is a
signature morphism such that it is the identity on visible sorts and visible oper-
ations, defines an injective map on hidden sorts and if ω′ : s′1 . . . s′n → s′ belongs
to HΩ′ and some sort in {s′1, . . . , s′n} lies in µ(HS), then ω′ = µ(ω) for some
ω ∈ HΩ. This last condition will be called encapsulation condition.

Note that, the one-to-one condition on hidden sorts is necessary in order to
obtain a category for hidden signatures. For instance, we can consider three hidden
signatures: Σ1 with one operation {+: h1 → v}, Σ2 with two operations {+: h1 →
v, ∗ : h2 → v}, Σ3 with two operations {+: h1 → v, ∗ : h1 → v}. These three
signatures Σ1, Σ2 and Σ3 are defined over the same visible signature (which has
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a unique visible sort v and no operations). So, {h1} is the hidden sort set for the
first and third hidden signatures and {h1, h2} for the second one. Now, we define
two hidden morphisms among them. First, the hidden morphism µ1 which is the
“inclusion” from Σ1 to Σ2. Second, the hidden morphism µ2 between Σ2 and Σ3

such that µ2(h1) = µ2(h2) = h1, and µ2(+) = +, µ2(∗) = ∗. This second hidden
morphism satisfies all the conditions of a hidden morphism except the one-to-one
condition on hidden sorts. But, it is clear that the composition µ2 ◦ µ1 of these
hidden morphisms is not a hidden morphism (since µ2 ◦µ1(h1) = h1 and does not
exist an operation in Σ1 whose image is the operation ∗ : h1 → v of Σ3). This
condition is not taken into account in the hidden categories defined in [14] and
[18].

Definition 2.8 (hidden algebra). A hidden algebra A for a hidden signature HΣ,
on V Σ and DV Σ, is an HΣ-algebra such that AV Σ = DV Σ (in other words, the
reduct of A to the visible part of the signature is equal to the data domain DV Σ).
A hidden morphism between two hidden algebras for a hidden signature HΣ, on
V Σ and DV Σ, is an HΣ-homomorphism h such that hV S is the identity on DV Σ.
The hidden algebras for a hidden signature HΣ, on V Σ and DV Σ, together with
the hidden morphisms, define a category which will be denoted by HAlg(HΣ).

Hidden algebra allows to model the distinction in the object-oriented paradigm
between data that are used for values and data that are used for internal states
(e.g., of objects). It assigns the former to visible sorts and the latter to hidden
sorts. States are “hidden” in that they are only observed through contexts, i.e.,
special terms that returns visible data values, as defined below.

Let HΣ = (S, Ω) be a hidden signature, on V Σ and DV Σ. An HΣ-context is
a visible HΣ({z})-term that has a single occurrence of a variable symbol z. A
context is said to be appropriate for a term t iff the sorts of t and z are the same.
We write c(t) for the result of the substitution of the term t for the occurrence of
the variable z in the context c. It is said that a hidden HΣ-algebra A behaviourally
satisfies an algebraic HΣ-equation ∀X.t = t′ iff for each HΣ-context c appropriate
for t (and t′), A |=E

HΣ ∀X.c(t) = c(t′). When considering equations of visible
sort the behavioural satisfaction is equivalent to the equational satisfaction. Two
elements a, a′ ∈ As, s ∈ S, are behaviourally equivalent iff A behaviourally satisfies
the HΣ-equation ∀∅.a = a′. Behavioural equivalence defines a congruence relation
on A.

Let us fix a set U as sort universe. Moreover, for each s ∈ U , a non-empty set
Ds is also fixed. The family D = {Ds}s∈U is called data universe. In the following
example, we define a hidden institution on this data universe.

Example 2.9. The hidden institution on the data universe D, denoted by HD,
is given by:

• the category SIGHD is the category whose objects are the hidden signa-
tures defined on a visible signature V Σ = (V S, V Ω) and a data domain
DV Σ, such that V S ⊆ U and (DV Σ)s = Ds for each s ∈ V S, and whose
morphisms are the hidden signature morphisms;
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• the functor SenHD : SIGHD → Set gives for each signature the set of
algebraic equations;

• the functor ModHD : SIGop
HD → Cat gives for each signature HΣ, on V Σ

and DV Σ, the category HAlg(HΣ) of hidden algebras,
• the satisfaction relation is the behavioural satisfaction.

The institution HD is slightly different from the hidden institution in [3, 14]. In
these papers, the category of signatures is defined on a unique fixed visible signa-
ture and data domain. Then, this visible signature is exactly the visible part of
each hidden signature in the institution. In the hidden institution HD a universe
of sorts and a data universe for these sorts are considered. Then, hidden signatures
are defined on a visible signature and a data domain included on these universes.
Note in addition that HD is not a generalization of the hidden institution in [14]
or [3] because in our hidden signature morphisms the visible parts of the source
and the target are identical. This condition suffices for the specification of the
data structures presented in EAT. An interesting problem, which is not dealt with
in this paper, consists in trying to relax this condition, for example, allowing to
define inclusions between sets of visible sorts.

Moreover, an institution morphism from the hidden institution in [3,14] to the
equational algebraic institution is defined in these papers. In the following example
we introduce, as a first example of institution encoding, a direct redefinition of
that morphism where the source institution is the hidden institution HD. This
encoding is similar to the morphism in [3,14] since the natural transformation for
sentences are identity maps, hence the direction of this natural transformation is
unimportant.

Example 2.10. We consider the institution encoding from HD to E defined by:
• the functor between categories of signatures forgets the distinction between

visible and hidden sorts;
• for each hidden signature HΣ, on V Σ and DV Σ, αHΣ : SenHD(HΣ) →

SenE(HΣ) is the identity map;
• for each hidden signature HΣ, on V Σ and DV Σ, βHΣ : ModHD (HΣ) →

ModE(HΣ) is the functor that gives for a hidden algebra the quotient alge-
bra that is obtained by identifying those elements which are behaviourally
equivalent (and for a hidden morphism between two hidden algebras the
quotient homomorphism defined by the behavioural congruence).

3. The imp construction

We have pointed out that in the EAT system [25] two layers of data structures
coexist. In a first layer, one finds the usual data structures like integer numbers,
(finite) lists, trees of symbols (to represent linear combinations or polynomials) and
so on. In the second layer, one must deal with algebraic structures like (graded)
groups, rings, simplicial sets or chain complexes, whose elements are data be-
longing to the first layer. These algebraic structures are first order elements in



OBJECT ORIENTED INSTITUTIONS 199

algebraic topology and then, a system such as EAT does not work with just one
of these structures, but handles families of them at runtime.

To carry out the specification of this type of structures, an operation between
abstract data types was defined in [21]. This operation models the step from work-
ing with a data type to working with a type whose “elements” are families of the
former. The operation is called imp construction (this name has been chosen be-
cause this kind of specifications are related to implementations of structures rather
than to the structures themselves, i.e., the treatment at low level that EAT makes
of them). Moreover, it was obtained that EAT data structures are final objects of
suitable categories of implementations of abstract data types [21]. Therefore, we
can conclude that the data representations chosen in EAT to implement its struc-
tures is the most “general” possible (in the sense that any other implementation
can be seen as a part of the implementation chosen in EAT).

The following simple example is used to explain the syntactic aspects of this
construction. Let GRP be a signature with a unique sort g and three operations:

prd : g g → g
inv : g → g
unt : → g

This signature is obviously the basis of the algebraic specification for a group,
whose underlying set is abstracted by the sort g. But if, as it is usual in symbolic
computation systems, it is necessary to handle several groups on the same under-
lying data set, a new sort, which remains hidden in the signature GRP, has to be
considered: the type of groups represented on g. If we make explicit this invisible
(or hidden) type, we obtain a new signature, that is denoted by GRPimp, with a
new sort imp GRP, and operations:

imp prd : imp GRP g g → g
imp inv : imp GRP g → g
imp unt : imp GRP → g

In general, for a given signature Σ = (S, Ω), a new signature Σimp = (Simp, Ωimp)
can be defined as follows:

• Simp = S ∪ {impΣ} with impΣ /∈ S;
• for each operation ω : s1 . . . sn → s in Ω, an operation imp ω :

impΣs1 . . . sn → s is included in Ωimp.
The GRPimp-algebras satisfy the property that each element of the carrier set for
the distinguished sort allows to retrieve a GRP-algebra. To be more precise, given
a GRPimp-algebra A, each element a ∈ Aimp GRP defines the GRP-algebra Aa =
〈Ag, imp prd(a,−,−), imp inv(a,−), imp unt(a)〉. Note that the operations of Aa

are obtained by fixing the element a as first argument of the operations of A. In
this way, each ADT for GRP (i.e., each category of GRP-algebras closed under
isomorphism [23]) has associated an ADT for GRPimp (those algebras verifying
that each GRP-algebra obtained from its “imp-elements” belongs to the ADT for
GRP). It is clear that this construction can be generalized to any signature Σimp.

In [22], the imp construction was studied from the point of view that a signa-
ture and its corresponding “imp-signature” belong to two different specification
frameworks: the equational algebraic specification for the former and the hidden
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specification (or the coalgebraic) framework for the latter. In the following sec-
tion, we will extend this operation to signature morphisms, sentences and models
in order to obtain institution morphisms.

4. A diagram of institution encodings to model

the imp construction

The aim of this section is to extend and to explain in terms of morphisms be-
tween institutions the imp operation presented in the previous section. At this
point, it is necessary to decide what type of morphism is convenient for this situa-
tion. In the literature several notions for a relationship between institutions have
been developed, and each one of these notions tries to represent a different kind of
link between institutions [17]. In our construction, the starting point is given by
signatures, sentences and models for a given structure and we get the correspond-
ing components for families of that structure. Thus, we are interested in trans-
lating all the components (signatures, sentences, models...) from the equational
algebraic context into other specification frameworks. Then, the most suitable no-
tion of institution morphism for this situation is that of institution encoding (the
three components of an institution encoding, that is, its functor between signa-
tures and the natural transformations on models and sentences, “go” in the same
direction). This notion has been used in a study of behavioural interpretation
of specifications by Bidoit and Hennicker in [2]. But, the use of an institution
encoding to model an operation between different specification frameworks is, up
to the authors’ knowledge, new in the literature.

In this section, we are going to define three institution encodings that place
our construction in three different specification frames. First, in the equational
algebraic institution, second in a hidden institution and finally in a coalgebraic
institution. They can be seen as three ways of understanding the imp construction.
Moreover, if the three morphisms are put together, they form a commutative
diagram of institution encodings.

Before establishing the morphisms, in the following subsection we are going to
define the source institution of all of them. This institution is a “subinstitution”
of the equational algebraic institution and reflects the idea of fixing the data sets
for the elements of the algebraic structures to be modelled.

4.1. The source institution

From a programming point of view, when you are dealing with implementations
of algebraic structures (groups, for instance), usually you are only interested in
structures whose elements share the same syntactic pattern. In this way, the
equational algebraic institution is a too general context for this aim. When you
translate this restriction to the model level, given a signature, you must restrict
yourself to algebras with the same carrier sets. From the equational algebraic
institution, an institution that captures this characteristic can be defined.
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Let us fix a set U that will be called sort universe. For each s ∈ U , a non-
empty set Ds is also fixed. The family D = {Ds}s∈U is called data universe. This
data universe was previously considered in Example 2.9 and it is a fixed universe
hereinafter in this paper.

The equational algebraic institution on a data universe D, denoted by ED, is
given by:

• the category SIGED is the category whose objects are signatures Σ =
(S, Ω) with S ⊆ U , and whose morphisms are signature morphisms that
are the identity on sorts;

• the functor SenED : SIGED → Set gives for each signature the set of
algebraic equations;

• the functor ModED : SIGop
ED → Cat gives for each signature Σ the category

whose objects are the Σ-algebras A such that As = Ds, for each sort s in
Σ, and whose morphisms are the identity morphisms;

• for each signature Σ in SIGED the satisfaction relation |=ED

Σ is the restric-
tion of the equational algebraic satisfaction relation to Obj(ModED (Σ))×
SenED(Σ).

Note that we are fixing the underlying set of a structure but not its operations. The
strong condition imposed on signature morphisms implies that it is not possible to
change the data domain assigned to a sort in two related signatures. Note that no
condition is imposed on the operation component of signature morphisms. Thus,
it is possible, for example, to define an inclusion signature morphism between
a signature for semigroups and a signature for groups. On the other hand, the
category of models of a signature is discrete (thus it is a set, rather than a proper
category). This restriction is due to the fact that they will correspond to the
visible part of hidden morphisms between hidden algebras.

4.2. A first institution encoding

A first attempt to specify the imp construction consists in using as target in-
stitution the well-know equational algebraic specification. This leads us to define
an institution encoding from ED, the equational algebraic institution on a data
universe D, to E , the equational algebraic institution.

Let Φeq = (Φ, α, β) be the institution encoding from ED to E , Φeq : ED → E ,
defined as follows.

• The functor Φ: SIGED → SIGE gives for each signature Σ = (S, Ω) in
SIGED the signature Σimp such that: Σimp = (Simp, Ωimp ∪ C) where
Simp = S ∪ {impΣ}, impΣ being a fresh symbol (i.e. impΣ /∈ U), and
Ωimp = {imp ω : impΣ s1 . . . sn → s | ω : s1 . . . sn → s ∈ Ω} (i.e. the
operations of Ωimp are obtained from the operations of Ω by adding the
new symbol as first argument sort). The set C contains a constant d : → s
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for each d ∈ Ds and each s ∈ S1. Given a signature morphism
µ : Σ → Σ′ from Σ = (S, Ω) to Σ′ = (S′, Ω′) in SIGED , Φ(µ) is the
signature morphism µimp : Σimp → Σ′

imp such that µimp(s) = s for each
s ∈ S, µimp(impΣ) := impΣ′ , if ω ∈ Ω is an operation such that µ(ω) = ω′

then µimp(imp ω) := imp ω′ and, finally, µimp(d) := d for each d ∈ C.
• The natural transformation α : SenED ⇒ SenE ◦Φ is defined by the family

of maps αΣ : SenED(Σ) → SenE(Σimp), one map αΣ for each signature
Σ = (S, Ω) in SIGED . The map αΣ acts on a sentence in Σ by adding a new
variable zimp of sort impΣ and replacing each occurrence of each operation
ω of Σ by the corresponding operation imp ω in Σimp (the sentence is
completed by putting the new variable where it is required). To be more
precise, if e is an equation ∀X.t = u in SenED(Σ), αΣ(e) is the equation
∀X∪{zimp}.ρ(t) = ρ(u), where ρ = (ρs : TΣ(X)s → TΣimp(X∪{zimp})s)s∈S is
the family of maps defined as follows: if t = x ∈ Xs then ρs(x) := x, if t =
ω(t1, . . . , tn), with ω : s1 . . . sn → s ∈ Ω, n ≥ 0 and for each i ∈ {1, . . . , n},
ti ∈ TΣ(X)si

then ρs(ω(t1, . . . , tn)) := imp ω(zimp, ρs1(t1), . . . , ρsn(tn)).
• The natural transformation β : ModED ⇒ ModE ◦ Φop is defined by the

family of functors βΣ : ModED (Σ) → ModE(Σimp), one functor βΣ for each
signature Σ = (S, Ω) in SIGED . Given a Σ-algebra A, βΣ(A) is the Σimp-
algebra such that βΣ(A)impΣ := {∗} (i.e. the carrier set for impΣ is the
singleton {∗}) and βΣ(A)s := Ds, for each s ∈ S. The interpretation of
the Σimp-operations in βΣ(A) is the natural one:

imp ωβΣ(A)(∗, d1, . . . , dn) = ωA(d1, . . . , dn).

As we have explained in the previous section, the signature Σimp can be seen as
the signature for families of Σ-algebras. An algebra for the signature Σimp satisfies
the sentence αΣ(e) if and only if every algebra of the family satisfies the sentence e.
This fact is formally stated in the following proposition, whose proof is an easy
exercise.

Proposition 4.1. Let Σ = (S, Ω) be a signature. Given a Σimp-algebra A =
〈AimpΣ , (Ds)s∈S , (imp ωA : AimpΣ × Ds1 × · · · × Dsn → Ds)ω : s1...sn→s∈Ω, (dA =
d)d∈C〉, for each element a ∈ AimpΣ , we consider the Σ-algebra Aa = 〈(Ds)s∈S,
(imp ωA(a,−) : Ds1 × · · · × Dsn → Ds)ω : s1...sn→s∈Ω〉. Then, for each Σ-sentence
e in ED:

A |=E
Σimp

αΣ(e) iff Aa |=ED

Σ e, for each a ∈ AimpΣ .

Taking into account the previous proposition, the proof of the following is straight-
forward.

Theorem 4.2. The triple Φeq = (Φ, α, β) defines an institution encoding between
ED and E.

1Note that we are using the same notation for the “imp-signatures” as in [21] and Section 3
above. Nevertheless, we have to introduce here the set of constants in these signatures in order
to obtain the institution encoding from the equational algebraic institution on a data universe
to a hidden institution, which will be defined later on in this paper.
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The basic idea of the above “canonical” encoding is that a Σ-algebra can be
encoded as a family of Σ-algebras with only one member. So, from a semantic
point of view, the models in the image represent trivial families of algebras. In the
following sections, we will redefine this morphism by using a variant of the hidden
institution and a particular coalgebraic institution as target institutions. In those
frameworks, it will be possible to sum (as a coproduct) these apparent trivial
images and this construction will provide us a new Σimp-algebra. That algebra
results to be the final algebra in the category that represents the families of Σ-
algebras and it will correspond to the final algebra obtained in [22] as a specification
of the EAT data structures. Moreover, the fact included in the previous proposition
that an algebra for the signature Σimp represents a family of Σ-algebras will be
expressed below through an institution encoding between the coalgebraic and the
hidden institutions which completes a diagram of institution morphisms.

4.3. A more suitable morphism

In the morphism of the previous section, we have bounded the domain. We have
considered ED as the domain of our institution encoding because this institution
accurately reflects the EAT way of working, that is, we fix a syntactic pattern
for the elements of the mathematical structures that are been represented in the
system. Likewise, it is quite clear that the range E is too wide: only the Σimp-
algebras based on D are relevant in our approach. There is an institution that
allows us to consider this fundamental characteristic: the hidden institution on D,
HD (see [14] and Sect. 2 in this paper). The “imp-signatures” will be perfectly
integrated into that institution, it will be enough to declare the new sort as a
hidden sort. So, we will be able to distinguish between fixed visible data (the
elements of the algebraic structures) and hidden objects (the algebraic structures).

Note that the hidden institution HD imposes a very strong condition on sig-
nature morphisms: the encapsulation condition, which is necessary to obtain the
satisfaction condition of that institution. But, considering the correspondence be-
tween the signature morphisms in the institution morphism which has been defined
in the previous section, it is clear that there are signature morphisms in ED that
cannot be translated into signature morphisms in HD. A simple example are the
inclusions between signatures (a semigroup and a group, for instance).

The “imp-signatures” define a very particular type of hidden signatures. They
have a unique hidden sort that never appears as target sort in any operation.
This type of sorts will be called deconstructor sorts. It is important to remark
that deconstructor sorts represent immutable objects, i.e. there are no updating
operations that allow a change of state. Thus, the only requirements they admit
are via direct observations (by using deconstructor operations). For example, when
you consider a group as an argument of an operation, you can use the product
operation of that group or you can ask if it satisfies the commutative property, but
you cannot change its internal structure. This implies that there are no terms of a
deconstructor sort apart from the variables, and therefore there are no equations
of that sort different from equalities between variables (it is clear that this trivial
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equations can be excluded without reducing the expressiveness of the institution).
In that case, we can skip over the encapsulation condition for a deconstructor sort
in order to obtain a hidden institution. This leads us to a definition of hidden
signature morphisms with an encapsulation condition which is weaker that the
usual one.

Definition 4.3 (deconstructor sort). A hidden sort h in a hidden signature HΣ is
said to be deconstructor if h does not appear as target sort of any operation on HΣ.

Definition 4.4 (deconstructor hidden signature morphism). Let HΣ and HΣ′ be
two hidden signatures, on V Σ and DV Σ. A deconstructor hidden signature mor-
phism µ : HΣ → HΣ′ is a signature morphism such that it is the identity on visible
sorts and visible operations, defines an injective map on hidden sorts whose image
by the signature morphism are not deconstructor sorts and if ω′ : s′1 . . . s′n → s′

belongs to HΩ′, some sort in {s′1, . . . , s′n} lies in µ(HS) and this sort is not a
deconstructor sort then ω′ = µ(ω) for some ω ∈ HΩ.

Thus, a deconstructor hidden signature morphism is a hidden signature mor-
phism such that it is not required that a deconstructor sort whose image by the sig-
nature morphism is a deconstructor sort satisfies the encapsulation condition. More-
over, the one-to-one condition on these deconstructor sorts is not required either.

Now, we can integrate this weaker encapsulation condition into the definition
of the hidden institution in Example 2.9. In this way, we obtain a new hidden
institution, which will be denoted by H̄D, given by:

• the category SIGH̄D is the category of hidden signatures on a data universe
D with deconstructor hidden signature morphisms;

• the functor SenH̄D : SIGH̄D → Set gives for each hidden signature HΣ
the set of equations SenHD(HΣ) except the equalities between two hidden
variables;

• the categories of models and the satisfaction relations are defined as in the
institution HD.

Now, the institution encoding Φeq from ED to E defined in the previous section
can be used as a guide in order to obtain a morphism, denoted by Φhd, which has
as target institution H̄D instead of E . The morphism Φhd is given by:

• The functor between the categories of signatures gives for each signature Σ
in ED the signature Σimp, being the distinguished sort impΣ (which does
not belong to the universe sort U) the unique hidden sort. With regard
to signature morphisms, the image of a morphism µ : Σ → Σ′ in ED is the
corresponding morphism µimp : Σimp → Σ′

imp. Since the hidden sort of an
“imp-signature” is deconstructor, it is clear that µimp is a deconstructor
signature morphism.

• The natural transformations on sentences and models are defined as the
corresponding components in Φeq. Note that a sentence is never applied
to an equation of hidden variables.

If we try to redefine the institution morphism from HD to E in Example 2.10
in order to obtain a morphism from H̄D to E , we cannot use the behavioural
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congruence. This is due to the weaker notion of hidden signature morphism.
Nevertheless, it is possible to define a “stronger” behavioural congruence where
the identification on models in the carrier set for a deconstructor sort is lost: the
equality is adopted in these sorts.

Definition 4.5 (deconstructor behavioural equivalence). Let HΣ = (S, Ω) be a
hidden signature, on V Σ and DV Σ, and let A be a hidden HΣ-algebra. Two
elements a, a′ ∈ As, with s ∈ S, are deconstructor behaviourally equivalent iff
a = a′ if s is a deconstructor sort and a is behaviourally equivalent to a′ otherwise.

This new definition of behavioural equivalence can seem unexpected for a “hid-
den” institution since for deconstructor sorts behavioural equivalence is not consid-
ered. The reason for this constraint is there are no useful equations in our context
for these very particular sorts. Then, behavioural equivalence is not suitable for
our applications. A more detailed discussion about this point will be presented
below and in Section 5.

Now, it is trivial to see that the deconstructor behavioural equivalence is a
congruence. Now, we can define an institution encoding, which can be denoted by
Φpr, from H̄D to E as follows:

• the functor between categories of signatures is defined as the corresponding
functor in the morphism in Example 2.10;

• for each hidden signature HΣ, on V Σ and DV Σ, αHΣ : SenH̄D(HΣ) →
SenE(HΣ) is the inclusion map (equalities between hidden sorts have been
excluded);

• for each hidden signature HΣ, on V Σ and DV Σ, βHΣ : ModH̄D (HΣ) →
ModE(HΣ) is the functor that gives for a hidden algebra the quotient
algebra given by the deconstructor behavioural congruence relation and
for a hidden morphism the corresponding quotient homomorphism.

It is important to note that the condition in a deconstructor hidden signature
morphism, that establishes that the deconstructor sorts whose images by the mor-
phism are non deconstructor sorts must verify the encapsulation condition, is only
necessary to define the morphism Φpr. Nevertheless, it is possible to define a
hidden institution such that it does not include this condition. The result is an
institution more general than H̄D. Besides, an institution encoding from ED to
this last institution is possible too.

The interpretation that can be done of the institution encoding Φhd is the fol-
lowing: the objects in ModED (Σ) are algebraic structures defined on D (that is,
whose underlying set is D) and the objects in ModH̄D (Σimp) are indexed fami-
lies of such structures, where the elements of the carrier sets for the hidden sort
impΣ act as indexes for the algebraic structures of the family. A hidden algebra
in ModED (Σ) which is the image of an algebra in ED by the morphism Φhd corre-
sponds with a family of algebras which only has one algebra. This hidden algebra
has as carrier set for the only deconstructor sort a singleton which is used as a
pointer to the algebra. Besides, in the specification on the hidden algebra none
equation of the deconstructor sort is defined and then the standard behavioural
equivalence is not used on this sort, as explained above, and it is interpreted as
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equality (according to Def. 4.5). So, from a semantic point of view, the models
in the image represent trivial families of algebras. But this apparent trivial fam-
ilies can be “summed” (as a coproduct) in order to obtain a new hidden algebra
which is the final algebra in our category of hidden algebras. This final algebra
in ModH̄D (Σimp) corresponds with the final objects proposed in [22] to model the
EAT data structures. In this new context, we obtain a formalization of a coding
of a set of Σ-algebras defined on D by a single Σimp-algebra.

Note that in order to build this institution encoding we could define an “ad-hoc”
institution as target institution with the required characteristics for our construc-
tion. This could be a variant of the equational institution with two types of
sorts: one with a fixed interpretation and another one with a loose interpretation.
Another possibility is to modify the hidden institution to reach the same goal.
Between these two options we have preferred to follow the hidden approach since
the role of visible and hidden is exactly the one we need. Another minor point is
the fact that a data domain is fixed with visible sorts, and this accurately to our
concrete application field. In addition, these points, which should be introduced
anew in an ad-hoc modification of the standard algebraic institution, are widely
presented in the literature [3, 14].

The existence or not of final objects in “hidden categories” has been widely
studied in the literature. For instance, a description of these final objects is given
through a “magical formula” in [15]. Nevertheless, in our very particular case,
the final object in ModH̄D (Σimp) admits an intuitive description. In our case, the
elements of its carrier set for the hidden sort are functional tuples, where each tuple
encodes the functions of one model in ED (see [21] for a more detailed explication).
This result was suggested by the way chosen by Sergeraert to develop EAT, using
intensively functional programming (see [21, 25]). In this program, an element of
the “imp sort” is encoded by means of a record of Common Lisp functions which
has a field for each operation in Σ. The elements of each algebraic structure (which
is represented by an instance of the record) are elements of D (which is fixed), or
constructed from initial semantics, and so they do not require an explicit storage.
When each particular implementation (i.e., each particular instance of the record)
is summed, a practical interpretation of the following result is obtained. It shows
that the models in the image of the institution encoding Φhd = (Φ, α, β) allows us
to build that final object. It suffices to consider the coproduct of the objects that
belong to the image of this morphism.

Theorem 4.6. Given a signature Σ in ED, the coproduct in ModH̄D (Σimp) of the
objects in βΣ(ModED (Σ)) is the final object in ModH̄D (Σimp).

The proof of this theorem is easy taking into account that D is fixed.

4.4. A third institution encoding

The third formalism we are going to consider is that of coalgebras. The coalge-
braic approach provides a general framework in which object-oriented features can
be studied in a very close way to hidden specifications (see [27] or [6] for instance).
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Definition 4.7 (coalgebra). Let F : Set → Set be an endofunctor of Set. A F -
coalgebra is a couple (X, c), where X is a set and c : X → F (X) is a map. A
morphism between two F-coalgebras (X, c) and (Y, d) is a map f : X → Y such
that F (f) ◦ c = d ◦ f .

The F -coalgebras, together with morphisms between them, define a category
which will be denoted by CoAlg(F ).

In order to include coalgebras in our institutional framework, we are going to
introduce the concept of coalgebraic institution associated to an institution.

Let I = (SIGI , SenI , ModI , |=I) be an institution. We assume that for each
signature Σ ∈ Obj(SIGI), the category ModI(Σ) is small (in consequence, each
class Obj(ModI(Σ)) is a set). We define the coalgebraic institution associated to
I, denoted by CoAlg(I), as follows:

• the category SIGCoAlg(I) is SIGI ;
• the functor SenCoAlg(I) is SenI ;
• the functor ModCoAlg(I) : SIGop

CoAlg(I) → Cat is defined by:
ModCoAlg(I)(Σ) := CoAlg(FΣ) for each object Σ in SIGop

CoAlg(I), where
FΣ is the endofunctor of the category Set that is constant on
Obj(ModI(Σ))2. With regard to the morphisms, if µ : Σ → Σ′ is a mor-
phism in SIGop

CoAlg(I) and (X ′, c′) is a FΣ′ -coalgebra then
ModCoAlg(I)(µ)((X ′, c′)) is the FΣ-coalgebra (X ′, ModI(µ) ◦ c′). More-
over, given a FΣ′ -morphism f : X ′ → Y ′ between two FΣ′ -coalgebras
(X ′, c′) and (Y ′, d′), the same map f defines a FΣ-morphism between
ModCoAlg(I)(µ)((X ′, c′)) and ModCoAlg(I)(µ)((Y ′, d′)).

• for a given signature Σ, the satisfaction relation |=CoAlg(I)
Σ is defined by:

(X, c) |=CoAlg(I)
Σ e iff c(x) |=I

Σ e, ∀x ∈ X,

where (X, c : X → Obj(ModI(Σ)) ∈ CoAlg(FΣ) and e ∈ SenCoAlg(I)(Σ).
This particular institution tries to represent, in a coalgebraic language, the insti-
tution for the families of models of the former institution. Note that a coalgebra
(X, c) is just a family of algebras labelled by elements of X .

When each morphism in the categories of I-models is an endomorphism, we
can define a canonical institution encoding from I to CoAlg(I). This morphism
is given by:

• the identity functor between the categories of signatures;
• for each signature Σ, αΣ : SenI(Σ) → SenCoAlg(I)(Σ) is the identity map;
• for each signature Σ, βΣ : ModI(Σ) → ModCoAlg(I)(Σ) is the functor giv-

ing for each Σ-algebra A ∈ Obj(ModI(Σ)) the FΣ-coalgebra
({∗}, iA : {∗} → ModI(Σ)), defined by iA(∗) = A, that is, the coalge-
bra that represents the family of Σ-algebras with a single element, the

2Note that FΣ : Set → Set is not constant on a particular object of ModI(Σ), but it is
constant on the whole Obj(ModI(Σ)), since, ModI(Σ) being a small category, Obj(ModI(Σ))
is simply a set.
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algebra A. Note that the unique morphism between the FΣ-coalgebras
βΣ(A) = ({∗}, iA) and βΣ(B) = ({∗}, iB), with A, B ∈ ModI(Σ), is the
identity map 1{∗}. So, in order to obtain that the functors βΣ are well-
defined it is necessary that in ModI(Σ) there exist only endomorphims.

It is straightforward to check that CoAlg(I) is an institution and that the above
mappings define an institution encoding.

Theorem 4.8. Let I be an institution so that for each Σ ∈ Obj(SIGI), ModI(Σ)
is a small category. Then CoAlg(I) is an institution. Moreover, if each morphism
in ModI(Σ) is an endomorphism, then there exists a canonical institution encoding
between I and CoAlg(I).

If this construction is particularized to I := ED, the equational algebraic insti-
tution on D (this is possible because all the categories of algebras in ED are small,
since D is fixed, and the morphisms between models are the identities), we obtain
the corresponding coalgebraic institution CoAlg(ED) and an institution encoding
from ED to CoAlg(ED). This morphism will be denoted by ΦCoAlg.

The morphism ΦCoAlg allows us to recover the final objects of the categories
of coalgebras CoAlg(FΣ). For this particular functor (see [27] for general results
on finality in categories of coalgebras), the final coalgebra can be described as the
FΣ-coalgebra (Obj(ModED (Σ)), idObj(ModED (Σ))). From a theoretical perspective,
this is not a relevant result. However, this coalgebra is a suitable idealization of
the representation used in EAT for the families of mathematical structures: the
set in the coalgebra acts as an index for the algebraic structures of the family (this
representation has been briefly explained in the previous section; we refer again
to [25] and [21] for a detailed description). Taking into account our institution
encoding ΦCoAlg = (Φ, α, β), the final object can be described in the following
way:

Theorem 4.9. Given a signature Σ in ED, the coproduct in CoAlg(FΣ) of the
objects in βΣ(ModED (Σ)) is the final object in CoAlg(FΣ).

4.5. A diagram of institution encodings

The three institution encodings previously introduced show three ways of ex-
plaining the imp construction which is the central component of the formal spec-
ification of the structures in the EAT system. In addition, the relations among
them are expressed in the following commutative diagram:

CoAlg(ED)

���ΦCoAlg �
Φi

ED �Φhd H̄D

���
Φeq �Φpr

E
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The only morphism that has not been defined yet is the institution encoding,
denoted by Φi, from CoAlg(ED) to H̄D. This morphism tries to formalize the
relationship between our particular coalgebras and hidden algebras [6] using an
institutional language. This morphism is defined as follows:

• the functor between the categories of signatures and the natural transfor-
mation between the sets of sentences are defined as the respective compo-
nents in the morphism Φhd;

• for each signature Σ = (S, Ω) in SIGCoAlg(ED), βΣ : ModCoAlg(ED)(Σ) →
ModH̄D (Σimp) is the functor giving for each FΣ-coalgebra
(X, c) ∈ Obj(ModCoAlg(ED)(Σ)) the hidden algebra βΣ((X, c)) defined
by the carrier set βΣ((X, c))impΣ = X and the function imp ωβΣ((X,c))

(a, d1, . . . , dn) := ωc(a)(d1, . . . , dn) for each hidden operation
imp ω : impΣs1 . . . sn → s ∈ Ωimp, n ≥ 0, each a ∈ X and di ∈ Di,
∀i = 1, . . . , n. A morphism f : X → Y between the coalgebras (X, c) and
(Y, c) is mapped to the hidden morphism between the corresponding hid-
den algebras defined by f , that is, fimpΣ = f and fs = 1s for each sort s
of Σ.

The satisfaction condition of this morphism corresponds to the fact expressed in
Proposition 4.1, i.e. a (hidden) algebra βΣ((X, c)) for the signature Σimp satisfies
the sentence αΣ(e) if and only if every algebra of the family (X, c) (in the coalgebra)
satisfies the sentence e. So, we obtain the following theorem.

Theorem 4.10. The triple Φi = (Φ, α, β) defines an institution encoding between
CoAlg(ED) and H̄D.

Now, in the diagram the role of the two data layers in EAT becomes clear.
The set D fixes a pattern for data of the first layer, which are used as elements
of the algebraic structures in the second data layer specified in ED. The hidden
sort in H̄D is used to specify families of structures in the second data layer. The
morphism Φhd formalized the relation between the two layers, where they are
perfectly distinguished as visible and hidden data. If we forget this distinction, we
obtain, by composition, the morphism Φeq. Finally, the morphism ΦCoAlg is based
on the description in coalgebraic language of those hidden algebras that represent
families in the second data layer.

In [10] we tried to introduce a similar diagram with the usual notion of institu-
tion morphism (non forward, i.e. where sentences are translated contravariantly
with respect to models). For example, to define an institution morphism from ED

to H̄D, we must give a natural transformation from the sentences in the hidden
institution to the sentences in the equational institution. Each sentence for a hid-
den signature Σimp has the particularity of including only variables as subterms of
the hidden sort. Then, from a Σimp-sentence (different from an equality of hidden
variables) we can define a Σ-sentence by eliminating all the hidden variables and
replacing each occurrence of an operation imp ω with the corresponding opera-
tion ω in Σ. (Here it is necessary that each model of ED includes as constants the
elements of the carrier set of D. This could have been proposed in the definition
of the institution ED, but it is not needed in the construction of the institution
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encodings in the previous sections.) If this technique is intended to be used in the
relationship between the coalgebraic institution and the hidden institution, we find
that it is only possible if the hidden institution is restricted to equations in one
hidden variable. This detail, that was overlooked in [10], expresses the relationship
between hidden algebras and coalgebras included in [6].

5. Relation with other hidden or coalgebraic

institutions

This section is devoted to establish relationships among the institutions that
have been used in this paper and other hidden or coalgebraic institutions devel-
oped in the literature. First, two institutions that could be used instead of our
hidden institution are briefly presented. Later, the links between our particular
coalgebraic institution and other institutions for coalgebras are analyzed. We are
not going to define these institutions in detail but we will only give some ideas
about their components. We refer the interested reader to the cited references.

The hidden institution defined in [16] is a generalization of that included in [14]
in at least two ways. On the one hand, it allows operations with multiple hidden
arguments. This characteristic makes that the categories of hidden algebras lose
the existence of final algebra. Obviously, this is not suitable for us. On the
other hand, it tries to include a weaker encapsulation condition. In particular, a
subset of operations, called behavioural operations, is distinguished and then, only
these operations are used as observers. In this case, to define an institution, it is
only required that the behavioural operations satisfy the encapsulation condition.
In this framework, the specifier has to decide which operations are behavioural.

It has been remarked in Section 4.3 that there are no equations of deconstructor
hidden sorts (different from equalities between variables), so the operations of these
sorts do not take part as observers for any equation. Then, there is no difference
(with regard to observation) if they are declared as behavioural operations or not.
Therefore, to avoid the encapsulation condition, it is advisable to consider (as a
rule for the specifier) this type of operations as non behavioural. With this rule,
this institution can be considered as a generalization of our hidden institution.

In [19], an institution for observational logic is defined. The signatures of these
institutions have a distinguished subset of sorts that are called observable sorts
and include, apart from sorts and operations, a new set of pairs (op, i) called
observers, where op : s1 . . . sn → s is an operation and i is a number that marks
a non observable argument sort of the operation. An observer (op, i) is said to
be a direct observer of si if s is an observable sort. The observable contexts are
terms of observable sort built from observers with a unique distinguished variable
of the sort which is intended to be observed. Now, a satisfaction relation between
(first order) equations and algebras can be defined with these contexts (in a similar
way to behavioural satisfaction). Let us note that a signature morphism in this
institution must verify a condition similar to the encapsulation condition for the
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observers (again, this condition is necessary in order to obtain the satisfaction
property on equations of non observable sorts).

In our case, a hidden signature with a unique deconstructor sort can be de-
scribed as an observational signature by declaring this sort as non observable.
Then, there is no difference if a direct observer is defined or not for each operation
having this non observable sort as argument. It is because there are no terms of
this non observable sort (different from variables) and so this direct observations
do not take part in the observation of any term. Therefore, they should not be
defined as observers in order to avoid the encapsulation condition. Then, this kind
of institution could be used in our construction instead of our hidden institution.

Coalgebraic institutions are considered in several works such as [20] or [7]. The
institution for observational specifications described in [20] has as signatures tuples
of two functors (Ω, Ξ), an algebraic functor and a coalgebraic one. The models are
pairs of structures algebra-coalgebra such that algebraic operations are compatible
with coalgebraic observations. Signature morphisms must verify an encapsulation
condition on the coalgebraic part. Finally, the satisfaction relation (using first
order equations) is defined by the notion of observational satisfaction with respect
to the coalgebraic part. An interesting comment included in this work is that the
proof of the satisfaction condition of that institution suggests the authors that
generalizations of this notion of signature morphism are possible.

We can obviously define an institution encoding from our coalgebraic institution
CoAlg(ED) to this institution. For each signature Σ ∈ SIGCoAlg(ED), the image
of Σ has as coalgebraic part the constant functor Ξ: Set → Set such that Ξ(X) =
Πσ : ω→v∈ΣDDω

v � Obj(ModED (Σ)), and as algebraic part the functor void, that
is, Ω(X) = ∅ for each set X . The basic idea is to consider a coalgebra as a
pair algebra-coalgebra such that the algebraic component is void. Nevertheless,
if we try to extend this definition to signature morphisms, we obtain that the
encapsulation condition of the target institution prevents the definition. To solve
this problem, we claim that for the particular case of a “state” sort [20] with a
constant coalgebraic functor and an algebraic functor void, i.e. it is a deconstructor
sort, it is possible to forget the encapsulation condition for this sort and thus a
slight generalization of the signature morphisms is obtained. With this slight
modification, the institution encoding can be easily completed.

The coalgebraic institution developed in [7] can be regarded, to a certain extent,
as a generalization of the approach included in [8]. It allows for observers whose
result type is structured as a coproduct of basic types. Since we are not interested
in such result types, we are not going to study the relation of our approach with
this institution and we prefer analyzing the interesting approach of [8].

In [8], a coalgebraic institution is not defined but it contains enough tools to
make it. The signatures are coalgebraic signatures with a unique hidden sort (and
some visible sorts), and a set of operations with (at least) the hidden sort as
argument sort. The operations are divided in methods (with the hidden sort as
target sort) and attributes. Besides, the signatures include a function that maps
each visible sort to a non-empty set which represents a fixed interpretation of the
visible sort in each signature. A model of a given signature consists of a set (the
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carrier set for the hidden sort) and functions for the operations. The morphisms
between two algebras are defined in the usual way. The unconventional point
is that the sentences for a signature are pairs of observations (or constants of
visible sort). An observation is a term of “visible sort” that contains exactly one
occurrence of a variable, which must be of hidden sort. These equations are valid
in a model if the two observations give the same result for all the states of the
carrier. Since there are only equations of visible sort, the satisfaction relation is
actually the equational algebraic one.

It is easy to complete the above definitions in order to obtain a coalgebraic
institution. It is important to note that since there are no hidden equations, the
encapsulation condition is not necessary. This is exactly the characteristic that
appears in our coalgebraic institution: there are no equations of the implicitly
hidden sort. In the first case, since equations are not allowed, the result of an
observation cannot be of hidden sort; in the second one, they are not feasible
because only direct observations are possible on deconstructor sorts. Now, an
institution morphism (non forward) can be defined in a natural way from our
coalgebraic institution to this new coalgebraic institution. It is not forward because
in our institution there are more equations than the direct observational ones. In
particular, terms with multiple (implicit) occurrences of the state variable can
appear in an equation. In [8], this type of sentences are proposed to be included
in a generalization of the framework via conditional equations schemes.

6. Conclusions and further work

In this paper we complete the analysis of the specification of the complex struc-
ture system of the EAT program. This specification required a construction be-
tween abstract data types, called imp operation. This operation relates different
specification frameworks, such as the equational algebraic specification and other
object-oriented specification frameworks (namely the hidden specification and the
coalgebraic frameworks). We extend here this operation to form three institution
encodings that show three views of the construction situated in an equational al-
gebraic institution, in a hidden institution or in a coalgebraic institution. These
morphisms are presented in a commutative diagram which establishes relation-
ships among these specification frameworks. Besides, these morphisms are used
to obtain a new description of the final object in these frameworks, which is a
suitable model of the implementation of EAT structures.

Trying to do an applied research using the specification techniques developed
in the literature, in order to obtain a model for our particular structures, some
new constructions have been found. These constructions suppose slight general-
izations of some existing techniques or particular, but significant, cases of others.
For example, we give a new definition of the encapsulation condition for a hidden
institution, a coalgebraic institution associated to an institution and a new insti-
tutional relationship between this coalgebraic institution and a hidden institution.
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In this work, we have found some difficulties in the direct use of the institutional
machinery in the formalization of actual symbolic computation systems and we
have shown how these problems can be tackled. Our study has pointed out this
approach suffers from the gap between the generality of the institutional framework
and the particularity of the algebraic structures which are under consideration.
The consequence of this, assuming that one chooses the use of institutions, is that
the institutional framework is stretched in such a way that in some cases we need
to introduce “ad-hoc” institutions and in other cases we use degenerated parts of
other institutions.

This work can be continued in at least two ways. On the one hand, the in-
stitutional description could be extended to other parts of the EAT system or
introduced into the specification of structures in the Kenzo system [11], an object-
oriented Sergeraert’s program (successor of EAT). For example, in [10] the specifi-
cation of the functorial relationship between data structures of EAT is studied and
in [9] the inheritance relationship between Kenzo structures is tackled, although
both works lack an institutional description (if such a thing is possible). Besides,
it should be established whether the theoretical results obtained here can be ap-
plied to other symbolic computation systems apart from EAT or Kenzo. On the
other hand, our construction can be studied using other techniques different from
institutions. For example, we could use Duval’s diagrammatic specifications [12]
in order to obtain a better understanding of our job and significant examples in
this theory.
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