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THREE NOTES ON THE COMPLEXITY OF MODEL
CHECKING FIXPOINT LOGIC WITH CHOP

Martin Lange1

Abstract. This paper analyses the complexity of model checking fix-
point logic with Chop – an extension of the modal µ-calculus with a
sequential composition operator. It uses two known game-based char-
acterisations to derive the following results: the combined model check-
ing complexity as well as the data complexity of FLC are EXPTIME-
complete. This is already the case for its alternation-free fragment.
The expression complexity of FLC is trivially P-hard and limited from
above by the complexity of solving a parity game, i.e. in UP∩co-UP.
For any fragment of fixed alternation depth, in particular alternation-
free formulas it is P-complete.
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Introduction

Fixpoint logic with Chop (FLC), as introduced by Müller-Olm [17], extends
Kozen’s modal µ-calculus [12] with a sequential composition operator. This vastly
increases its expressive power. Since the modal µ-calculus is equi-expressive to
the bisimulation-invariant fragment of monadic second order logic over all graphs
[9] and to finite Rabin tree automata [6], properties expressed in this logic are
inherently regular.

On infinite words, e.g., FLC is equi-expressive to alternating context-free gram-
mars with leftmost derivations [13]. Hence, FLC is capable of specifying certain
non-regular properties including all context-free and some context-sensitive ones.
Moreover, FLC formulas can also describe the bisimulation-invariance class of
transition systems specified in basic process algebra (BPA) [17]. Consequently,
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FLC does not retain the finite model property and its satisfiability problem is
undecidable.

Because of its ability to specify non-regular properties like uniform inevitabil-
ity, unlimited counting, etc. FLC is interesting for program verification purposes
via model checking. Unfortunately, FLC model checking is already undecidable
for normed deterministic BPA, a very small class of infinite state systems [16].
However, it is decidable for finite-state processes for trivial reasons as noted by
Müller-Olm [17]: the semantics of a formula is one of finitely many candidates
only. Note that checking non-regular properties of finite systems is not an oxy-
moron but can be useful because of succinctness, or e.g. if the exact size of the
underlying system is unknown.

Stirling and the author of this paper [16] presented a tableaux calculus which
shows that FLC’s model checking problem is in fact decidable in deterministic
exponential time. They also show that it is hard for polynomial space. A simpler
proof is due to Müller-Olm – featured in the same publication – which even shows
PSPACE-hardness for the data complexity of FLC. This measures the model
checking problem when only the transition system is considered to be the input
while the formula is fixed. Dually, the expression complexity of a logic is the
complexity of its model checking problem for a fixed transition system but varying
formula. In this setting, we also speak of the combined model checking complexity
when both the transition system and the formula are regarded as input.

Stirling and the author of this paper also claimed that the model checking prob-
lem for FLC is in PSPACE for formulas of fixed alternation depth. This, however,
is based on the false observation that on a transition system of size n, each fix-
point formula has to be unfolded at most n times. In order to deal with sequential
composition, Müller-Olm has lifted the semantics of a modal µ-calculus formula
as a predicate in the subset lattice of a state space to a predicate transformer in
the lattice of monotone functions from such subsets to subsets. If n is the size of
the underlying transition system, then the height of this lattice is n ·2n. This only
gives an exponential upper bound on the number of iterations, viz. unfoldings
needed for one fixpoint formula.

This paper provides three notes on the model checking problem for FLC. The
first one in Section 2 recalls a game-theoretic characterisation of FLC’s model
checking which was used to prove inclusion of the latter in EXPTIME [16]. It
then simply observes that these games are parity games whose size is linear in
the size of the FLC formula. Hence, the expression complexity of FLC is that of
solving parity games, i.e. in NP∩co-NP [7] and even in UP∩co-UP [10].

The second note in Section 3 targets the optimality of the exponential time
upper bound. We present a family of transition systems of growing size n and an
FLC formula with a least fixpoint quantifier s.t. the number of unfoldings needed
to show satisfaction of the least fixpoint formula is exponential in n. This exposes
a mistake in the proof of the earlier statement about FLC model checking for
formulas of fixed alternation depth is in PSPACE.

The third note in Section 5 provides a lower bound for FLC’s model checking.
It uses another game-theoretic characterisation of FLC’s model checking problem
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[14] which enables a simple reduction from the pushdown game problem defined
in Section 4 and shown to be EXPTIME-complete by Walukiewicz [21].

Finally, Section 6 summarises these findings, discusses further work and presents
– as a consequence – a separation result between FLC and another modal fixpoint
logic.

1. Fixpoint logic with Chop

Let P = {p, p, q, q, . . .} be a set of propositional constants with q = q for any q,
V = {X,Y, . . .} a set of propositional variables, and A = {a, b, . . .} a set of action
names. A labeled transition system is a graph T = (S, { a−→| a ∈ A}, L) where S
is a set of states, a−→ for each a ∈ A is a binary relation on states and L : S → 2P

labels the states s.t. for all q and s: q ∈ L(s) iff q �∈ L(s).
Formulas of FLC are given by

ϕ ::= q | Z | τ | 〈a〉 | [a] | ϕ ∨ ϕ | ϕ ∧ ϕ | µZ.ϕ | νZ.ϕ | ϕ;ϕ

where q ∈ P , Z ∈ V , and a ∈ A. We will write σ for µ or ν. Formulas are
assumed to be well named in the sense that each binder variable is distinct. Each
closed ϕ induces a function fpϕ : V → FLC that maps each variable to its defining
fixed point formula. The fixpoint type of a variable is the type (µ or ν) of its
corresponding fixpoint quantifier: X is of type σ if fpϕ(X) = σX.ψ for some ψ.

We will use the following standard abbreviations: q → ϕ := q ∨ ϕ, tt := q ∨ q
and ff := q ∧ q for some q ∈ P .

The set Sub(ϕ) of subformulas of ϕ is defined as usual. The size of a formula
is the number of its subformulas: |ϕ| := |Sub(ϕ)|.

Given a ϕ ∈ FLC and X,Y ∈ Sub(ϕ) we write X ≺ϕ Y if Y occurs free
in fpϕ(X). Let <ϕ denote the transitive closure of ≺ϕ. The alternation-depth
of ϕ, ad(ϕ) is the index n in a maximal chain X0 <ϕ X2 <ϕ . . . <ϕ Xn of
variables such that adjacent variables in this chain have different fixpoint types.
Let FLCk := {ϕ ∈ FLC | ad(ϕ) ≤ k}.

The semantics of an FLC formula ϕ, w.r.t. a transition system T = (S, { a−→| a ∈
A}, L) and an environment ρ interpreting its free variables is a monotone predicate
transformer [[ϕ]]Tρ : 2S → 2S where ρ : V → 2S → 2S . It is inductively defined
using the fact that the monotone functions of type 2S → 2S form a complete
lattice together with the partial order � defined by

f � g iff ∀T ⊆ S : f(T ) ⊆ g(T ).
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We write � and � for the infima and suprema according to this ordering, and ◦
for function composition.

[[q]]Tρ := λT.{s | q ∈ L(s)}

[[Z]]Tρ := ρ(Z)

[[τ ]]Tρ := λT.T

[[〈a〉]]Tρ := λT.{s | ∃t ∈ T, s
a−→ t}

[[[a]]]Tρ := λT.{s | ∀t ∈ S : s a−→ t⇒ t ∈ T }

[[ϕ ∨ ψ]]Tρ := [[ϕ]]Tρ � [[ψ]]Tρ
[[ϕ ∧ ψ]]Tρ := [[ϕ]]Tρ � [[ψ]]Tρ

[[µZ.ϕ]]Tρ :=
�{

f : 2S → 2S | f monotone, [[ϕ]]Tρ[Z �→f ] � f
}

[[νZ.ϕ]]Tρ :=
⊔{

f : 2S → 2S | f monotone, f � [[ϕ]]Tρ[Z �→f ]

}
[[ϕ;ψ]]Tρ := [[ϕ]]Tρ ◦ [[ψ]]Tρ .

Define the usual satisfaction relation for a closed ϕ as: T , s |= ϕ iff s ∈ [[ϕ]]T (S).

Proposition 1.1 [16]. The model checking problem for FLC is in EXPTIME.

In order to ease notation in the rest of this paper, we introduce formulas of
simultaneous fixpoint inductions that are admissible w.r.t. succinctness and ex-
pressiveness in FLC.

If X1, . . . , Xn are variables for some n ∈ N and ϕ1, . . . , ϕn are possibly open
FLC formulas, then the following is a simultaneous fixpoint formula of FLC where
σ ∈ {µ, ν}.

σ

⎛
⎜⎝

X1 ⇐ ϕ1

...
Xn ⇐ ϕn

⎞
⎟⎠ .

The semantics of such a formula Φ is given by the following translation into plain
FLC:

Φ := σX1.ϕ1(X1, σX2.ϕ2(X1, X2, σX3. . . . , . . .), . . .).

Note that this is just an incorporation of the Békic̀ Lemma [1] into the syntax of
FLC. It obviously does not increases the expressive power. The explicit unfolding
into formulas with non-simultaneous fixpoints can be exponentially longer than
the formula with simultaneous fixpoints, but the unfolded version has a DAG
representation that is only linear in the size of the simultaneous one.
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s, S � ψ1 ∨ ψ2

s, S � ψi
∃ : i ∈ {0, 1} s, S � ψ1 ∧ ψ2

s, S � ψi
∀ : i ∈ {0, 1}

s, S � σX.ψ
s, S � X

s, S � X
s, S � ψ if fp(X) = σX.ψ

s, S � ψ1;ψ2

s, T � ψ1 |∀ t, S � ψ2
∃ : T ⊆ S, ∀ : t ∈ T

Figure 1. The rules of the global model checking game.

2. Note I: the expression complexity of FLC

First we present a game-theoretic characterisation of FLC’s model checking
problem. This is a slight modification of a global model checking tableau calculus
used to show inclusion in EXPTIME of FLC’s model checking problem [16].

The global model checking game G1
T (s0, ϕ0) for a transition system T = (S, { a−→ |

a ∈ Σ}, L), a starting state s0 and an FLC formula ϕ0 is played between players
∃ and ∀ on the game board S × 2S × Sub(ϕ). A configuration is written s, T � ψ
and its intended meaning is s ∈ [[ϕ]]T (T ).

Every play of the game G1
T (s0, ϕ0) starts with the configuration s0,S � ϕ0 and

proceeds according to the rules presented in Figure 1. The annotation to the right
of a rule explains which player chooses what in which configuration. For example,
if the current configuration is of the form s, S � ψ1;ψ2 then player ∃ chooses a
T ⊆ S first, then player ∀ chooses whether to continue with s, T � ψ1 or to select
a t ∈ T and to continue with t, S � ψ2.

Player ∃ wins the play C0, . . . iff one of the following holds.

(1) There is an n ∈ N, s.t. Cn = s, S � τ and s ∈ S.
(2) There is an n ∈ N, s.t. Cn = s, S � 〈a〉 and there is a t ∈ S with s a−→ t.
(3) There is an n ∈ N, s.t. Cn = s, S � [a] and for all t with s a−→ t we have

t ∈ S.
(4) The play is infinite and the outermost variable that occurs infinitely often

in it is of type ν.

Player ∀ wins the play C0, . . . iff one of the following holds.

(5) There is an n ∈ N, s.t. Cn = s, S � τ and s �∈ S.
(6) There is an n ∈ N, s.t. Cn = s, S � 〈a〉 and for all t with s

a−→ t we have
t �∈ S.
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(7) There is an n ∈ N, s.t. Cn = s, S � [a] and there is a t with s a−→ t and
t �∈ S.

(8) The play is infinite and the outermost variable that occurs infinitely often
in it is of type µ.

Proposition 2.1 [16]. Player ∃ wins the global model checking game G1
T (s, ϕ) iff

T , s |= ϕ.

It is not hard to see that each G1
T (s, ϕ) is in fact a parity game. The nodes

of this game are the configurations of G1
T (s, ϕ), the edges are given by the game

rules. The priorities are assigned in the usual manner: configurations with µ-,
resp. ν-variables in their formula component get odd, resp. even priorities such
that the dependency order on the variables is reflected in these priorities [8]. Note
that every dead-end in G1

T (s, ϕ) can be made into a loop on a single node with
priority 0, resp. 1, depending on whether the winner of a play ending in this node
is ∃, resp. ∀.

Proposition 2.2. For every transition system T with state set S, every s ∈ S,
and every ϕ ∈ FLC there is a parity game of size at most |S| · 2|S| · |ϕ| that is won
by player ∃ iff T , s |= ϕ.

Corollary 2.3. The FLC model checking problem for fixed transition systems is
in NP∩co-NP.

Proof. According to Proposition 2.2, the model checking problem for FLC on a
transition system of size n and a formula ϕ can be reduced to the problem of
solving a parity game of size at most n · 2n · |ϕ|. If the transition system is fixed,
i.e. n is a constant, then this yields a linear time reduction. Since solving parity
games is in NP∩co-NP [7], so is the model checking for FLC on a fixed transition
system. �

Proposition 2.2 together with the fact that solving parity games even is in
UP∩-co-UP [10] yields the following stronger observation.

Corollary 2.4. The FLC model checking problem for fixed transition systems is
in UP∩co-UP.

Moreover, the maximal priority assigned in the parity game for an FLC for-
mula ϕ only depends on the alternation depth of ϕ. Hence, if that is fixed, so is
the maximal priority. Since the best known algorithms for solving parity games
are exponential in the number of priorities only [2, 3, 11, 18, 19], we get a stronger
result for the expression complexity of FLCk for any k ∈ N.

Corollary 2.5. The FLCk model checking problem for fixed transition systems is
in P.
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3. Note II: a lower bound on number of unfoldings

Approximants to a fixpoint formula σX.ψ are defined as usual: µ0X.ψ(X) := ff,
µm+1X.ψ(X) := ψ(µmX.ψ(X)), etc. Since here we are only concerned with finite
models, we do not need to consider transfinite approximants.

We will prove that there are FLC fixpoint formulas that need an exponential
number of unfoldings, resp. approximants to determine their truth value.

Let Tn be the transition system consisting of states Sn = {00, . . . , 0n−1, 10, . . . ,
1n−1} s.t. each 0i is labeled 0 and each 1i is labeled 1. The transitions between
the states are as follows.

• 0i
set−−→ 1j and 1i

set−−→ 1j for all 0 ≤ j < i < n;
• 0i

unset−−−−→ 0j and 1i
unset−−−−→ 0j for all 0 ≤ j < i < n;

• 0i
flip−−−→ 1i and 1i

flip−−−→ 0i for all 0 ≤ i < n.

Let ψinc = ([set ] ∧ [flip]) ∨ (τ ∧ 〈unset〉). Note that ψinc formalises the step-wise
increase of a binary counter modeled by Tn. It can equivalently be rewritten to

ψinc ≡ (0 ∧ [set ] ∧ [flip]) ∨ (1 ∧ [set ] ∧ [flip]) ∨ (τ ∧ 〈unset〉).

This says: a bit is set to 0 if itself and all lower bits are 1; it is set to 1 if all lower
bits are 1 but itself is 0; and its value is kept if there is a lower bit that is set to 0.

With any natural number k in the range of {0, . . . , 2n−1} we will associate a set
of states ||k|| ⊆ Sn as follows: ||k|| := {xi | the i-th bit of k in binary coding is x}.
For example, if n = 3 then ||6|| = {00, 11, 12}.

We say that a closed FLC formula ϕ represents the number k in the range
of {0, . . . , 2n − 1} iff ||k|| = [[ϕ]]Tn(Sn). For example, the atomic FLC formula 1
represents the number 2n − 1.

For any FLC formula ϕ let ϕk denote the k-fold sequential composition of ϕ,
i.e. ϕ0 := τ and ϕk+1 := ϕ;ϕk.

Lemma 3.1. For all n > 0 and all k ∈ {0, . . . , 2n − 1}: the FLC formula ψk
inc ; 0

represents the number k on Tn.

Proof. Take any n > 0. We prove the claim by induction on k. If k = 0
then ψk

inc ; 0 ≡ 0, and ||0|| = {00, . . . , 0n−1} = [[0]]Tn(Sn).

Now let k > 0. By the induction hypothesis we have [[ψk−1
inc ; 0]]

Tn = ||k − 1||.
In particular, [[ψk−1

inc ; 0]]
Tn is a constant predicate transformer, i.e. a predicate, and

therefore we have

[[ψk
inc ; 0]]

Tn(Sn) = [[ψinc ;ψk−1
inc ; 0]]

Tn(Sn) = [[ψinc ]]
Tn

(
[[ψk−1

inc ; 0]]
Tn(Sn)

)
= [[ψinc ]]

Tn
(
||k − 1||

)
= ||k||.

The last equality simply holds because ψinc encodes the increase of a binary
counter. �
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Theorem 3.2. There is a family of transition systems {Tn | n ≥ 1} with a
state s and FLC formulas µX.ψ and q, s.t. for all n: Tn, s |= (µX.ψ); q but the
sequence {mn | n ≥ 1} of smallest approximation indices s.t. Tn, s |= (µmnX.ψ); q
is mn = Ω(2n).

Proof. Consider the FLC formula (µZ.τ ∨ Z;ψinc); 0. Note that for all k ∈ N we
have

(µkZ.τ ∨ Z;ψinc); 0 ≡
∨
i≤k

ψi
inc ; 0

because of the general equivalences ff;ϕ ≡ ff, (ϕ1 ∨ ϕ2);ψ ≡ ϕ1;ψ ∨ ϕ2;ψ, and
τ ;ϕ ≡ ϕ.

Using Lemma 3.1 we obtain
(1) 1n−1 |= (µZ.τ ∨ Z;ψinc); 0
(2) 1n−1 |= (µ2n−1

Z.τ ∨ Z;ψinc); 0 but
(3) 1n−1 �|= (µkZ.τ ∨ Z;ψinc); 0 for all k = 0, . . . , 2n−1 − 1. �

This insinuates that the model checking problem for FLC requires at least deter-
ministic exponential time. The rest of this paper shows that this is indeed the case.

4. Pushdown games

A pushdown frame is a tuple G = (Q,Σ, R, q0, qf ) where Q is a finite set of
states, Σ a finite alphabet and R ⊆ Q× Σ × (Q× Σ∗)∗ a finite set of rules. The
two designated states q0, qf ∈ Q are the starting and the final state. A rule in R
is denoted (q, a) � (q1, w1), . . . , (qn, wn).

A pushdown game is a pair (G,w0) where G is a pushdown frame over the
alphabet Σ and w0 ∈ Σ+. The game is played between players ∃ and ∀ starting in
the configuration (q0, w0). It proceeds as follows.

If the current configuration is (q, aw) then player ∃ chooses a rule (q, a) �
(q1, w1), . . . , (qn, wn). Then player ∀ chooses an i ∈ {1, . . . , n}, and the play
continues with the configuration (qi, wiw).

Player ∃ wins a play if it eventually reaches the configuration (qf , ε), otherwise
player ∀ wins. We say that she wins the game (G,w) iff she has a winning strategy
for the game. The pushdown game problem is: given a pushdown game (G,w),
does player ∃ win this game?

Proposition 4.1 (Walukiewicz [21]). The pushdown game problem is EXPTIME-
complete.

In order to obtain EXPTIME-hardness of FLC’s data complexity we eliminate
the input word from pushdown games.

Theorem 4.2. The pushdown game problem for games of the form (G, a) for
some fixed a ∈ Σ is EXPTIME-complete.

Proof. By a simple reduction from arbitrary pushdown games to the ones in the
prescribed form. Let (G,w) be a pushdown game with G = (Q,Σ, R, q0, qf ), and
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t, δ � ψ1 ∨ ψ2

t, δ � ψi
∃ : i ∈ {0, 1} t, δ � ψ1 ∧ ψ2

t, δ � ψi
∀ : i ∈ {0, 1}

t, δ � σX.ψ
t, δ � X

t, δ � X
t, δ � ψ if fp(X) = σX.ψ

t, δ � ψ1;ψ2

t, ψ2; δ � ψ1

t, ψ; δ � τ
t, δ � ψ

t, ψ; δ � 〈a〉
t′, δ � ψ ∃ : t a−→ t′

t, ψ; δ � [a]
t′, δ � ψ ∀ : t a−→ t′

Figure 2. The rules of the local model checking game.

input word w = a0 . . . an. Define the pushdown frame Gw,a as (Q′,Σ, R′, q′0, qf )
where

• Q′ = Q ∪ {q′0} for some q′0 �∈ Q;
• R′ = R ∪ {(q′0, a) � (q0, w)}.

Now consider the pushdown game (Gw,a, a). Because of the added deterministic
rule, each play starts by putting the original input word w onto the stack to reach
the configuration (q0, w). From then on it proceeds like any play in (G,w). Hence,
player ∃ wins (Gw,a, a) iff she wins (G,w). �

5. Note III: the data complexity of FLC

We start by presenting another game-based characterisation of FLC’s model
checking problem which provides a link to pushdown games. This is a simplification
of the so-called local FLC model checking games [14].

Our aim is to establish a lower complexity bound by reduction from the push-
down game problem. Note that a pushdown game is a reachability game: the
winner of a play is solely determined by which configurations have been reached.
Not surprisingly, alternation-free FLC formulas – even those with µ-quantifiers
only – suffice for a reduction of this kind. We will therefore present these model
checking games for alternation-free formulas only.

Given a transition system T = (S, { a−→| a ∈ A}, L), a starting state s ∈ S,
and a ϕ ∈ FLC0, the game G2

T (s, ϕ) is played between players ∃ and ∀ on the
game board S × Sub(ϕ)∗ × Sub(ϕ). A configuration is written s, δ � ψ where δ is
interpreted as a stack with the top on the left. The stack’s elements are separated
by the sequential composition operator “;”.

Every play of GT (s, ϕ) starts with the configurationC0 = s, tt � ϕ, and proceeds
according to the rules presented in Figure 2.
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Player ∃ wins the play C0, C1, . . . iff one of the following holds.

(1) There is an n ∈ N, s.t. Cn = t, δ � q for some q ∈ P and q ∈ L(t).
(2) There is an n ∈ N, s.t. Cn = t, δ � [a] for some a ∈ A and there is no t′

with t a−→ t′.
(3) There are infinitely many ij with Cij = tij , δij � X for a ν-variable X .

Player ∀ wins the play C0, C1, . . . iff one of the following holds

(4) There is an n ∈ N, s.t. Cn = t, δ � q for some q ∈ P and q �∈ L(t).
(5) There is an n ∈ N, s.t. Cn = t, δ � 〈a〉 for some a ∈ A and there is no t′

with t a−→ t′.
(6) There are infinitely many ij with Cij = tij , δij � X for a µ-variable X .

The local game G2
T (s, ϕ) can be seen as a left-depth-first search through the global

game G1
T (s, ϕ) in which the state set component is represented symbolically by

an FLC formula, viz. the stack. We remark that the winning conditions become
more complicated for alternating formulas. It is the outermost variable that occurs
infinitely often in the limit of the stack that determines the winner. It is therefore
not evident that a reduction to parity games exists, as it does for the global game.

It is possible to show that every play has a unique winner, that the games are
determined, that they characterise exactly the model checking problem for FLC,
and that positional strategies suffice for winning the game.

Proposition 5.1 [14]. Player ∃ wins the local model checking game G2
T (s, ϕ) iff

T , s |= ϕ.

Theorem 5.2. The FLC model checking problem for fixed formulas is EXPTIME-
hard.

Proof. By reduction from the pushdown game problem for games of the simple
form (G, a) for some fixed a ∈ Σ which is EXPTIME-hard according to Theo-
rem 4.2. We define a polynomial reduction from such pushdown games to transi-
tion systems TG over the set {s, f} of atomic propositions and the set Σ∪ {#} of
transition labels.

Let (G, a) be a pushdown game with G = (Q,Σ, R, q0, qf ). First of all, for
every q ∈ Q there is a state q in TG. These are exactly those states that are
labeled with s – marking it as a state. State qf is the only state that is also
labeled with f – marking it as final. Take any q ∈ Q and any a ∈ Σ, and let
(q, a) � ∆1, . . . , (q, a) � ∆n be all the rules for (q, a) in R. TG has a state ∆i and
a transition q a−→∆i for every i = 1, . . . , n.

Finally, take any i and let ∆i = (qi,1, wi,1), . . . , (qi,mi , wi,mi). For every j =
1, . . . ,mi there is a sequence of states and transitions

∆i
#−−→• bk−−→• bk−1−−−−→• . . . • b1−−→ qi,j

s.t. wi,j = b1 . . . bk. In case wi,j = ε there is only a transition ∆i
#−−→ qi,j .
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Next we construct a fixed formula Φa describing the existence of a winning
strategy for player ∃ in any pushdown game (G, a). Let Σ = {a1, . . . , ak}.

Φa :=

⎛
⎜⎜⎜⎝µ

⎛
⎜⎜⎜⎝

S ⇐ Xa

Xa1 ⇐ Ψa1

...
Xak

⇐ Ψak

⎞
⎟⎟⎟⎠
⎞
⎟⎟⎟⎠ ; f

where

Ψb := 〈b〉; [#];

(
µY.(s ∧ τ) ∨

(
s ∧

∨
c∈Σ

〈c〉;Y ;Xc

))
.

It remains to be seen that this reduction is sound and complete, i.e. player ∃ wins
the pushdown game (G, a) with starting state q0 iff TG, q0 |= Φa.

Suppose that player ∃ has a winning strategy ζ for the game (G, a). It can
be used to define a winning strategy for her in the game G2

TG
(q0,Φa): in a con-

figuration q, δ � 〈b〉; . . . with δ = Xb1 ; . . . ;Xbk
; f ; tt choose the transition q b−→∆i

s.t. ζ(q, bb1 . . . bk) = ∆i. In the following, player ∀ will implicitly select a (q′, v)
through his choice with [#]. Let v = c1 . . . cm. Then simply unfold the fixpoint
formula m times and follow the deterministic transitions to the state q′. Because
of the reversed order of these transitions, the configuration reached will be

q′, Xc2 ; . . . ;Xcm ;Xb2 ; . . . ;Xbk
; qf ; tt � Xc1

which corresponds to the pushdown game configuration (q′, vb2 . . . bk) that player ∀
led to. It is not hard to see that this strategy is winning because ζ is winning.
According to Proposition 5.1, we have TG, q0 |= Φa.

The converse direction follows from determinacy: if player ∃ does not have
a winning strategy for the pushdown game (Gw, a) then player ∀ has a winning
strategy for this game. It can be assumed to be positional. This carries over in the
same way to a winning strategy for him in the game G2

TG
(q0,Φa). Note that the

conjuncts s and s in each Ψb enforce player ∃ to unfold the least fixpoint formula
exactly k times if the chosen rule (q, b) � (q′, v) in (G, a) pushes k elements onto
the stack, i.e. there are k states to traverse before state q′ is reached. According
to Proposition 5.1 again, we have TG, q0 �|= Φa.

Finally, |TG| = O(|G|) and |Φa| = O(|Σ|). Hence, for a fixed Σ this is a
polynomial time reduction from the pushdown game problem to the set of models
of the fixed FLC formula Φa. This even holds if the simultaneous fixpoint operator
is eliminated from Φa at a possible exponential blow-up in length. �

A quick inspection of the structure of Φa yields the following stronger result.

Corollary 5.3. The model checking problem for fixed formulas of one fixpoint type
only (and thus FLC0) is EXPTIME-hard.

Clearly, the combined complexity of a model checking problem is at least as
hard as the expression or data complexity.
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Corollary 5.4. The model checking problem for FLC is EXPTIME-hard.

6. Conclusion

The following table summarises the statements of Proposition 1.1, Theorem 5.2,
and Corollaries 2.4, 2.5, 5.3 and 5.4.

model checking FLC FLCk, k ∈ N

combined complexity EXPTIME-complete EXPTIME-complete

expression complexity P-hard, ∈ UP∩co-UP P-complete

data complexity EXPTIME-complete EXPTIME-complete

P-hardness of FLC’s expression complexity follows from an unpublished
P-hardness-result of the expression complexity for the modal µ-calculus by
Dziembowski et al. [5].

The lower bounds in this paper do not only close the gap for FLC model checking
but also provide insight into two further problems.

First, note that because of the predicate transformer, i.e. monotone first-order
function semantics, FLC can be regarded as the natural extension of the modal
µ-calculus to the next function order. This idea has been followed consequently
in the introduction of Higher Order Fixpoint Logic (HFL) by Viswanathan and
Viswanathan [20]. It combines the modal µ-calculus and a typed λ-calculus which
achieves even higher expressive power than that of FLC. HFL contains a natural
hierarchy of syntactic fragments s.t. level k, denoted HFLk, contains formulas
whose subformulas can all be typed using function types of order at most k. It
is easy to see that the modal µ-calculus is HFL0 and that FLC is a fragment of
HFL1.

As with FLC, HFL’s model checking problem is trivially decidable as noted
by Viswanathan and Viswanathan [20]. Recently, it has been shown [15] that the
general problem is non-elementary, and that the combined complexity of model
checking HFLk is at least hard for deterministic (k − 3)-fold exponential space
when k ≥ 3. Theorem 5.4 improves on this showing that model checking HFL1,
HFL2 and HFL3 is at least EXPTIME-hard.

Second, Corollary 5.2 separates FLC from yet another logic that is a proper ex-
tension of the modal µ-calculus and, hence, capable of defining certain non-regular
properties: Dawar, Grädel and Kreutzer’s Modal Iteration Calculus (MIC) [4]. It
uses inflationary and deflationary rather than least and greatest fixpoints. Its
model checking problem is PSPACE-complete [4] and in P for fixed formulas.

Corollary 6.1. FLC �≤ MIC.

Proof. Suppose FLC ≤ MIC, i.e. for every ϕ ∈ FLC there is a ϕ′ ∈ MIC s.t.
ϕ ≡ ϕ′. Let ϕ0 be the FLC formula constructed in the proof of Theorem 5.4.
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Then every language in EXPTIME could be polynomially reduced to the MIC
model checking problem on the fixed formula ϕ′

0. This, however, would imply
P = EXPTIME which is impossible. �
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