For polyominoes coded by their boundary word, we describe a quadratic
Mots-clés : polyominoes, tiling the plane by translation, theorem of Beauquier-Nivat, pseudo-square, pseudo-hexagon, enumeration of special classes of polyominoes
@article{ITA_2007__41_2_147_0, author = {Gambini, Ian and Vuillon, Laurent}, title = {An algorithm for deciding if a polyomino tiles the plane}, journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications}, pages = {147--155}, publisher = {EDP-Sciences}, volume = {41}, number = {2}, year = {2007}, doi = {10.1051/ita:2007012}, mrnumber = {2350641}, language = {en}, url = {https://www.numdam.org/articles/10.1051/ita:2007012/} }
TY - JOUR AU - Gambini, Ian AU - Vuillon, Laurent TI - An algorithm for deciding if a polyomino tiles the plane JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications PY - 2007 SP - 147 EP - 155 VL - 41 IS - 2 PB - EDP-Sciences UR - https://www.numdam.org/articles/10.1051/ita:2007012/ DO - 10.1051/ita:2007012 LA - en ID - ITA_2007__41_2_147_0 ER -
%0 Journal Article %A Gambini, Ian %A Vuillon, Laurent %T An algorithm for deciding if a polyomino tiles the plane %J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications %D 2007 %P 147-155 %V 41 %N 2 %I EDP-Sciences %U https://www.numdam.org/articles/10.1051/ita:2007012/ %R 10.1051/ita:2007012 %G en %F ITA_2007__41_2_147_0
Gambini, Ian; Vuillon, Laurent. An algorithm for deciding if a polyomino tiles the plane. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 41 (2007) no. 2, pp. 147-155. doi : 10.1051/ita:2007012. https://www.numdam.org/articles/10.1051/ita:2007012/
[1] ECO: a methodology for the Enumeration of Combinatorial Objects. J. Difference Equ. Appl. 5 (1999) 435-490. | Zbl
, , and ,[2] On translating one polyomino to tile the plane. Discrete Comput. Geom. 6 (1991) 575-592. | Zbl
and ,[3] A method for the enumeration of various classes of column-convex polygons. Discrete Math. 154 (1996) 1-25. | Zbl
,[4] Habilitation. LABRI Université de Bordeaux 1 (1996). | MR
.[5] Rigorous results for the number of convex polygons on the square and honeycomb lattices. J. Phys. A 21 (1988) 2635-2642.
and .[6] Introduction to algorithms. Chapt. 34, MIT Press (1990) 853-885. | Zbl
, and ,[7] Salient and Reentrant Points of Discrete Sets, in Proc. of the nineth International Workshop on Combinatorial Image Analysis (IWCIA 2003), volume 12 of Electronic Notes in Discrete Mathematics. Elsevier (2003). | MR | Zbl
and .[8] Enumeration of convex polyominoes using the ECO method, in Discrete Models for Complex Systems, DMCS'03, edited by M. Morvan and É. Rémila, Discrete Mathematics and Theoretical Computer Science Proceedings AB, 103-116. | Zbl
, , and ,[9] Algebraic languages and polyominoes enumeration. Theoret. Comput. Sci. 34 (1984) 169-206. | Zbl
and ,[10] A Method for Cutting Squares Into Distinct Squares. Discrete Appl. Math. 98 (1999) 65-80. | Zbl
,[11] Polyominoes, Princeton science library (1994). | Zbl
.[12] Complexity of cutting words on regular tilings. Eur. J. Combin. 28 (2007) 429-438. | Zbl
and .[13] Fast pattern matching in strings. SIAM J. Comput. 6 (1997) 323-350. | Zbl
, and .[14] Enumeration of symmetry classes of convex polyminoes in the square lattice. Adv. Appl. Math. 21 (1998) 343-380. | Zbl
, and ,[15] Enumeration of symmetry classes of parallelogram polyminoes. Ann. Sci. Math. Québec 25 (2001) 53-72. | Zbl
and ,- Proving a conjecture on prime double square tiles, Discrete Applied Mathematics, Volume 350 (2024), p. 71 | DOI:10.1016/j.dam.2024.02.022
- On the Number of p4-Tilings by an n-Omino, International Journal of Computational Geometry Applications, Volume 29 (2019) no. 01, p. 3 | DOI:10.1142/s0218195919400016
- Small polyomino packing, Information Processing Letters, Volume 126 (2017), p. 30 | DOI:10.1016/j.ipl.2017.06.004
- An Optimal Algorithm for Tiling the Plane with a Translated Polyomino, Algorithms and Computation, Volume 9472 (2015), p. 3 | DOI:10.1007/978-3-662-48971-0_1
- Rectangular tileability and complementary tileability are undecidable, European Journal of Combinatorics, Volume 41 (2014), p. 20 | DOI:10.1016/j.ejc.2014.03.008
- On the Arithmetics of Discrete Figures, Language and Automata Theory and Applications, Volume 8370 (2014), p. 198 | DOI:10.1007/978-3-319-04921-2_16
- Non-lattice-periodic tilings of R3 by single polycubes, Theoretical Computer Science, Volume 432 (2012), p. 52 | DOI:10.1016/j.tcs.2012.01.014
- SCHEDULING SENSORS BY TILING LATTICES, Parallel Processing Letters, Volume 20 (2010) no. 01, p. 3 | DOI:10.1142/s0129626410000028
- On the tiling by translation problem, Discrete Applied Mathematics, Volume 157 (2009) no. 3, p. 464 | DOI:10.1016/j.dam.2008.05.026
- Tiling the Plane with a Fixed Number of Polyominoes, Language and Automata Theory and Applications, Volume 5457 (2009), p. 638 | DOI:10.1007/978-3-642-00982-2_54
Cité par 10 documents. Sources : Crossref