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ON THE HIERARCHIES OF ∆0
2-REAL NUMBERS ∗

Xizhong Zheng1

Abstract. A real number x is called ∆0
2 if its binary expansion corre-

sponds to a ∆0
2-set of natural numbers. Such reals are just the limits of

computable sequences of rational numbers and hence also called com-
putably approximable. Depending on how fast the sequences converge,
∆0

2-reals have different levels of effectiveness. This leads to various hi-
erarchies of ∆0

2 reals. In this survey paper we summarize several recent
developments related to such kind of hierarchies shown by the author
and his collaborators.

Mathematics Subject Classification. 03D55, 26E40, 68Q15.

1. Introduction

We consider only the reals of the unit interval [0, 1] in this paper except explicitly
stated otherwise. Thus, each real x corresponds naturally to a set A of natural
numbers such that x = xA :=

∑
n∈A 2−(n+1). In this paper we identify a set with

its characteristic sequence, i.e., n ∈ A ⇐⇒ A(n) = 1 and n /∈ A ⇐⇒ A(n) = 0
for all n. Thus the real xA of binary expansion A can also be denoted by 0.A.
In this way, the computability of subsets of natural numbers can be transferred
straightforwardly to reals. For example, according to Turing [25], a real x is
computable if there is an effective procedure to write down its binary expansion
one bit after another2. In other words, x has a computable binary expansion
in the sense that x = xA for a computable A ⊆ N. This definition is robust
because Robinson [18] and others (see [6, 10]) have shown that, if we define the

Keywords and phrases. Computably approximable reals, ∆0
2-reals, hierarchy.

∗ This work is supported by DFG (446 CHV 113/240/0-1) and NSFC (10420130638).

1 Department of Computer Science, Jiangsu University, Zhenjiang 212013, China and
Theoretische Informatik, BTU Cottbus, 03044 Cottbus, Germany; zheng@tu-cottbus.de
2Turing’s original definition in [25] uses the decimal expansion instead of binary expansion

and he suggested also the Cauchy sequence representation in the addendum [26]. But they are
obviously equivalent.

c© EDP Sciences 2007

Article published by EDP Sciences and available at http://www.edpsciences.org/ita or http://dx.doi.org/10.1051/ita:2007008

http://www.edpsciences.org/ita
http://dx.doi.org/10.1051/ita:2007008


4 X. ZHENG

computability of reals by means of Dedekind cuts or Cauchy representations, we
achieve the same notion. More precisely, x is computable iff it has a computable
Dedekind cut Lx := {r ∈ Q : r < x}; and iff there is a computable sequence (xs)
of rational numbers which converges to x effectively in the sense that

(∀n ∈ N)(|xn − xn+1| ≤ 2−n). (1)

The class of computable reals is denoted by EC (for Effctively Computable). Ac-
tually, a reasonable effectivization of any representation of reals leads to the same
computability notion. This means that the computability of reals is independent
of their representations. By a simple relativization we can easily show that the
notion of Turing reducibility of reals is independent of their representations too
(see, e.g., [5]). Here the Turing reducibility of reals is defined as follows: xA is
Turing reducible to xB (denoted by xA ≤T xB) iff A ≤T B. Two reals x, y are
Turing equivalent (denoted by x ≡T y) if x ≤T y and y ≤T x. The Turing degree
degT (x) of a real x is defined as the class of all reals which are Turing equivalent
to x, i.e., degT (x) := {y ∈ R : y ≡T x}. Because of the correspondence between
reals and subsets of natural numbers, we can identify the Turing degree degT (xA)
of a real xA and the Turing degree degT (A) := {B ⊆ N : A ≡T B} of the set
A ⊆ N. Thus, we can say that a degree of real is c.e. if it contains at least a
c.e. set.

Unfortunately, the nice story of independence has to stop here. For stronger
computability3 the representation does play a critical role. Specker shows for ex-
ample in [24] that, the primitive recursiveness of reals based on Dedekind cuts
is strictly stronger than that based on binary expansion which is again stronger
than one defined based on the representation of Cauchy sequences. For polynomial
time computability, Ko [8] shows that, binary expansions and Dedekind cuts lead
to the same notion of polynomial time computability of reals, but they are strictly
stronger than that of Cauchy representation. Moreover, only the class of polyno-
mial time computable reals defined based on Cauchy sequence representation is
closed under arithmetical operations.

The situation for weak computability of reals is quite similar. For instance, we
can consider the following three versions of “computably enumerable” reals: C1

consists of all reals xA for c.e. sets A; C2 contains all reals x of c.e. left Dedekind
cuts Lx; and C3 is the class of limits of computable sequences of rational numbers
(which form, of course, c.e. sets of rational numbers). These notions are not
equivalent and we have actually C1 � C2 � C3. As a result, both strong and
weak computability of reals depend on their representations and in general the
notion corresponding to Cauchy sequence representation has also nice analytical
properties. In the preceding example, only the class C3 is an algebraic field. The
elements of C3 are naturally called computably approximable (c.a., for short) and
the class C3 is hereafter denoted by CA. Computably approximable reals is a very

3For two properties α and β, we say that α is stronger than β if the set of objects of the
property α is a proper subset of that of β. A notion which is stronger (weaker) than normal
computability is called stronger (weaker) computability.
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interesting class which shares a lot of properties with the class of computable reals.
Ho [7] shows that a real is computably approximable iff it is 0′-computable, i.e.,
there exists a 0′-computable sequence (xs) of rational numbers which converges to
x effectively in the sense of (1). Thus, a computably approximable real has a ∆0

2

binary expansion and hence it is also called a ∆0
2-real. Specker [24] was the first to

show that CA is different from EC. Since then, a lot of classes of reals between
EC and CA have been introduced and investigated. They are closely related to
various hierarchies of ∆0

2-sets (cf. [12,13,22]). Especially, since c.a. reals are limits
of computable sequences of rational numbers, we can introduce various subclasses
of CA by add some extra conditions on the convergence. This leads to a lot of
hierarchies of ∆0

2-reals which classify computability levels of reals. In the following,
we summarize some of such kind of hierarchies which are recently introduced by
the author and his collaborators.

2. A finite hierarchy

Let’s begin with a finite hierarchy of ∆0
2-reals in this section. As mentioned, the

class EC of computable reals is the first and the smallest subclass of ∆0
2-real which

we are really interested in. If we consider the increasing and decreasing monotone
instead of effectively converging computable sequences of rational numbers, we
obtain the classes of c.e. and co-c.e., respectively, reals which both extend the class
EC. As arithmetical closure of c.e. reals we obtain the class of d-c.e. reals which
can be further extended to its closure (the class of dbc reals) under computable
total real functions. All these classes are defined in purely analytical way and they
form a finite hierarchy of CA.

2.1. Computably enumerable reals

In computability theory, the recursive enumerability (r.e.) or, recently more
popular after Soare [19], computable enumerability (c.e.) of sets is one of the most
important notion besides computability. For real numbers, there are two straight-
forward ways to define their “computable enumerability”: A real x is called binary
c.e. or Dedekind c.e. if x = xA for a c.e. set A or if its Dedekind cut Lx is a c.e. set
of rational numbers4, respectively. Obviously, a real x is Dedekind c.e. iff there is
an increasing computable sequence (xs) of rational numbers which converges to x.
In addition, it is easy to see that any binary c.e. real is also Dedekind c.e. But the
converse does not hold in general as observed by C. G. Jockusch (see [20]). For
example, if A is a non-computable c.e. set and B := A ⊕ A, then the real xB is
Dedekind c.e. but not binary c.e., where A⊕B := {2n : n ∈ A}∪{2n+1 : n ∈ B}
is the join of sets A and B. Actually, if (As) is a computable enumeration of A,
i.e., (As) is a computable sequence of finite sets such that A0 = ∅, As ⊆ As+1

for all s and lims As = A, then (xAs⊕As
) is an increasing computable sequence of

4We use rational numbers Q and dyadic rational numbers D exchangeably. They are equivalent
for the computability consideration.
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rational numbers which converges to xA⊕A. These and other observations (see e.g.
[20, 21]) show that the computable enumerability of reals according to Dedekind
cuts is more proper than that according to binary expansion and hence we have
the following definition.

Definition 2.1. A real x is c.e. (co-c.e.) if there is an increasing (decreasing)
computable sequence (xs) of rational numbers which converges to x. The classes
of c.e. and co-c.e. reals are denoted by CE and co -CE.

C.e. and co-c.e. reals are also called left and right computable because they
can be approximated from the left and right side in the real axis, respectively.
Left and right computable reals together are called semi-computable and the class
of all semi-computable reals is denoted by SC. A real x is semi-computable iff
there is a computable sequence (xs) of rational numbers which converges to x
1-monotonically in the sense that |x− xt| ≤ |x− xs| for all t > s (see [1, 27]).

The computable enumerability of a real is different from the computable enu-
merability of its binary expansion. It is, however, equivalent to the strongly ω-
computable enumerability of its binary expansion as shown by Calude, Hertling,
Khoussainov and Wang [2]. Let’s explain the notion of strongly ω-c.e. now. Ac-
cording to Ershov [9], a set A ⊆ N is h-c.e. for a function h : N → N if there is
a computable sequence (As) of finite sets which converges to A such that A0 = ∅
and |{s ∈ N : As(n) �= As+1(n)}| ≤ h(n) for all n ∈ N. Ershov shows that (so
called Ershov’s hierarchy theorem), if f(n) < h(n) hold for infinitely many n, then
there is an h-c.e. set which is not f -c.e. For any constant k ∈ N, A is k-c.e. if
it is h-c.e. for the constant function h := λn.k, and A is ω-c.e. if it is h-c.e. for a
computable function h. Obviously, 1-c.e. sets are just c.e. sets and the 2-c.e. sets
are usually called d-c.e. (standing for difference of c.e. sets) because for any 2-
c.e. set A there exist c.e. sets B,C such that A = B \ C. Thus, an ω-c.e. set can
be constructed in such a way that, for any n ∈ N, the mind-changes for n (i.e., the
change of the value As(n)) is bounded by a computable function. As a variant of
ω-c.e., A is called strongly ω-c.e. if there is a computable sequence (As) of finite
sets which converges to A such that

(∀n∀s)(n ∈ As −As+1 =⇒ (∃m < n)(m ∈ As+1 −As)). (2)

That is, whenever some number n leaves A, some smaller number m has to enter A
at the same time according to the enumeration (As). Thus, any strongly ω-c.e. set
is h-c.e. for h := λn.2n, and, by Ershov’s hierarchy theorem, not every ω-c.e. set
is strongly ω-c.e. One of the most important property of strongly ω-c.e. sets is the
binary characterization of c.e. reals.

Theorem 2.2 (Calude, Hertling, Khoussainov and Wang [2]). A real x is c.e. if
and only if x = xA for a strongly ω-c.e. set A.
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The binary expansion leads naturally to an infinite hierarchy of c.e. reals.
Soare [20] called a c.e. real x stably c.e.5 if its binary expansion is d-c.e. For ex-
ample, the real of Jockusch’s example is a stably c.e. Since there exists a strongly
ω-c.e. set which is not d-c.e., the class of all stably c.e. reals is strictly between the
classes of binary c.e. and c.e. reals. There is no reason to stop here. In general,
a c.e. real is called h-stably c.e. for a function h if its binary expansion is an
h-c.e. set. Thus, the k-stably c.e., for constant k ∈ N, and the ω-stably c.e. reals
can be defined accordingly [27]. By Theorem 2.2, the classes of h-stably c.e. reals
collapse to the level λn.2n-stably c.e. for h(n) ≥ 2n for all n. For lower levels,
however, we have a proper hierarchy.

Theorem 2.3 (Weihrauch and Zheng [27]). For any constant k, there is a (k+1)-
stably c.e. real which is not k-stably c.e. and there exists an ω-stably c.e. real which
is not k-stably c.e. for any k ∈ N.

Additionally, Downey [4] calls a real strongly c.e. if its binary expansion is c.e.
Moreover, Wu [28] calls a real k-strongly c.e. if it is the sum of up to k strongly
c.e. reals. All k-strongly c.e. reals are called regular. Wu shows that, for any k ∈ N,
a k-strongly c.e. real is 2k-stably c.e. and there is a (k+1)-strongly c.e. real which
is not k-stably c.e. This, together with Theorem 2.3, implies that, for any k ∈ N,
there is a (k + 1)-strongly c.e. real which is not k-strongly c.e. and there exists a
c.e. real which is not regular.

Besides λn.2n-stably computable enumerability, there is another very useful
necessary condition of semi-computability as follows.

Theorem 2.4 (Ambos-Spies, Weihrauch and Zheng [1]). If A,B ⊆ N are Turing
incomparable c.e. sets, then the real xA⊕B is not semi-computable.

In particular, the previous theorem implies that any non-computable c.e. degree
contains a non-semi-computable real and the class of c.e. reals is not closed under
subtraction.

2.2. Difference of c.e. reals

The classes of c.e. and semi-computable reals are introduced naturally by the
monotonicity of sequences and have a lot of nice computability-theoretical prop-
erties. However, neither of them have nice analytical property. For example, they
are not closed under subtraction. This motivates us to explore their arithmetical
closure and leads to the following definition.

Definition 2.5. A real x is called d-c.e. (difference of c.e.) if there are c.e. reals
y, z such that x = y − z. The class of all d-c.e. reals is denoted by DCE.

By Theorem 2.4, the class DCE is a proper superset of CE and SC, because
xA⊕B = x2A − x2B+1 is d-c.e. but not semi-computable if A and B are Turing

5Of course, Soare [20] uses the term “stably r.e.” In this paper we always use “computable”
instead of “recursive” after the suggestion of Soare in [19].
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incomparable c.e. sets. But the difference hierarchy collapses since DCE is ob-
viously closed under addition and subtraction. Moreover, the class DCE is also
closed under multiplication and division and hence is a filed. This follows from
another nice characterization of d-c.e. reals as follows.

Theorem 2.6 (Ambos-Spies, Weihrauch and Zheng [1]). A real x is d-c.e. iff there
is a computable sequence (xs) of rational numbers which converges to x weakly
effectively in the sense that the sum

∑
s∈N |xs − xs+1| is finite.

Because of Theorem 2.6, d-c.e. reals are also called weakly computable in litera-
tures [1,27,29]. Now it is easy to see that DCE is closed under arithmetical oper-
ations +,−,×,÷ and hence it is the arithmetical closure of CE (and of co-CE).
Recently, Raichev [14] and, independently, Ng [11] show that DCE is actually a
real closed field.

There is another very interesting characterization of d-c.e. reals related to the
Solovay reduction which classifies the relative randomness of the real numbers. A
real x is Solovay reducible to y if there exist two computable sequences (xs) and
(ys) of rational numbers converging to x and y, respectively, such that |x− xs| ≤
c(|y − ys| + 2−s) for some constant c and all s (see [23, 33]). Solovay [23] shows
that any c.e. real is Solovay reducible to a c.e. random real. For d-c.e. reals we
have the following result.

Theorem 2.7 (Rettinger and Zheng [16]). A real number is d-c.e. if and only if
it is Solovay reducible to a c.e. random real.

The binary expansion of a c.e real can only be up to λn.2n-c.e. in Ershov’s hier-
archy. However, the d-c.e. real can have much more complicated binary expansion
even beyond the ω-c.e. sets as the next result showed.

Theorem 2.8 (Zheng [31]). There are two (strongly) c.e. reals y and z such that
the difference x := y − z does not have an ω-c.e. Turing degree. That is, there
exists a d-c.e. real which has a non-ω-c.e. Turing degree.

More recently, the following results about the Turing degrees of d-c.e. reals are
shown.

Theorem 2.9 (Downey, Wu and Zheng [3]).
(1) Every ω-c.e. Turing degree contains a d-c.e. real; and
(2) there exists a ∆0

2-Turing degree which does not contain any d-c.e. reals.

Thus, the class of Turing degrees of d-c.e. reals contains all ω-c.e. degrees and
some (but not all) non-ω-c.e. degrees. Theorem 2.9 is proved by an interesting
finite priority construction using double witnesses technique. The main idea will
be explained in the proof of Theorem 2.13 which extends Theorem 2.9 to a larger
class.

We close our discussion about d-c.e. reals with an interesting necessary condition
shown by Ambos-Spies, Weihrauch and Zheng [1] as follows.

Theorem 2.10 (Ambos-Spies, Weihrauch and Zheng [1]). For any set A, if x2A

is a d-c.e. real, then A is h-c.e. for h = λn.23n.
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By Ershov’s hierarchy theorem, there exists a ∆0
2-set A which is not λn.23n-c.e.

and hence x2A is not a d-c.e. real. This implies immediately that DCE � CA.

2.3. Divergence bounded computable reals

The class DCE is an arithmetical closure of CE and has nice arithmetical prop-
erties. However, it is not closed under total computable real functions (see [35]).
This leads to another class of reals which extends DCE properly. To understand
better the computability contents of these reals, we introduce first a new class as
follows.

Definition 2.11 (Rettinger et al. [17]). A real x is called dbc (divergence bounded
computable) if there is a computable total function h and a computable sequence
(xs) of rational numbers which converges to x h-bounded effectively in the sense
that there are at most h(n) non-overlapping index-pairs (i, j) with |xi−xj | ≥ 2−n.

The pair (i, j) with |xi − xj | ≥ 2−n is called a 2−n-jump. For any 2−n-jump
(i, j), the binary expansions of xi and xj differ at their first n-positions. As a
result, any real number of an ω-c.e. binary expansion is dbc. The class of all
dbc reals is denoted by DBC. Surprisingly, the class DBC is just the closure of
c.e. reals (and hence of d-c.e. reals) under total computable real functions.

Theorem 2.12 (Rettinger et al. [17]). A real x is dbc iff there is a d-c.e. real y
and a total computable real function f such that x = f(y).

Notice that, if A is an ω-c.e. but not λn.23n-c.e. set, then x2A is divergence
bounded computable (because 2A is ω-c.e. too) but not d-c.e. by Theorem 2.10.
This implies that DBC properly extends the class DCE. On the other hand, by
a diagonalization argument we can show that there is a ∆0

2-real which is not dbc.
The next theorem shows that, even the Turing degrees of dbc reals do not exhaust
all ∆0

2-Turing degrees and this extends Theorem 2.9.

Theorem 2.13 (Zheng and Rettinger [32]). There is a ∆0
2-Turing degree which

does not contain any divergence bounded computable reals.

Proof. We construct a computable sequence (As) of finite subsets of natural num-
bers which converges to A such that A is not Turing equivalent to any divergence
bounded computable real. To this end, the set A has to satisfy all the following
requirements.

Re : be and he are total functions and (be(s))s

converges he-bounded effectively to xBe

}
=⇒ A �= ΦBe

e ∨Be �= ΨA,

where (be, he,Φe,Ψe) is an effective enumeration of all tuples of computable partial
functions be :⊆ N → D, he :⊆ N → N, and computable functionals Φe,Ψe. In
this proof, we use the corresponding lower case letters ϕe and ψe to denote the
use functions of Φe and Ψe, which record the largest oracle queries during the
computations ΦB

e and ΨA
e , respectively. For any e, s ∈ N, if be(s) is defined, then
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let Be,s be the finite set of natural numbers such that be(s) = xBe,s . We define
the length function l as follows:

l(e, s) := max{x : As � x = ΦBe,s
e,s � x & Be,s � ϕe,s(x) = ΨAs

e,s � ϕe,s(x)}.

Thus, to satisfy Re, it suffices to guarantee that l(e, s) is bounded above, if the
premisses of Re hold.

To satisfy Re, we choose a witness ne large enough and let A(ne−1)A(ne) = 00
at the beginning. Then wait for a stage s such that l(e, s) > ne. If this does
not happen, then we are done. Otherwise, let s1 be the first stage such that
l(e, s1) > ne and let me := ψe,s1(ϕe,s1 (ne)). Assume w.l.o.g. that ne < me. If
he,s1(me) is also defined, then we put ne − 1 into A to destroy the agreement
and wait for a new stage s2 > s1 such that l(e, s2) > ne holds again. If no such
stage exists, then we are done again. Otherwise, we put ne into A too. If there
exists another stage s3 > s2 such that l(e, s3) > ne, then we delete both ne − 1
and ne from A. In this case, the set As3+1 is recovered to that of stage s1, i.e.,
As3+1 = As1 . This closes a circle in which the values A(ne − 1)A(n2) changes in
the order 00 → 10 → 11 → 00. This process will continue as long as the number
of 2−me-jumps of the sequence (xBe,s) does not exceed he(me).

In this way, we achieve a temporary disagreement between A and ΦBe
e by change

the values A(ne − 1)A(ne) whenever the length of agreement goes beyond the
witness ne. After that, if the agreement becomes bigger than ne again, then
the corresponding value ΦBe

e (ne−1)ΦBe
e (ne) has to be changed too and this forces

the initial segment Be � ϕe(ne) to be changed, say, Be,s � ϕe,s(ne) �= Be,t �
ϕe,t(ne). If |xBe,s −xBe,t | ≥ 2−me , then (s, t) is a 2−me-jump and this can happen
at most he(me) times if the sequence (be(s)) converges he-bounded effectively.

On the other hand, if |xBe,s − xBe,t | = 2−m < 2−me for a natural number
m > me. Then there exists a (least) natural number n < me such that Be,s(n) �=
Be,t(n) because Be,s � me �= Be,t � me (remember that me ≥ ϕe(ne)). This implies
that, Be,s = 0.w10kv or Be,s = 0.w01kv for some w, v ∈ {0, 1}∗ and k := m− n.
Correspondingly, the combination ΦBe,s

e,s (ne − 1)ΦBe,s
e,s (ne) can have at most two

possibilities too. However, in every circle described above, A(ne − 1)A(ne) takes
three different forms, i.e., 00, 10 and 11. In other words, we can always achieve
a disagreement A �= ΦB

e at some stages and hence the requirement Re is satisfied
eventually.

To satisfy all requirements simultaneously, we apply a finite injury priority
construction. In this case, only elements larger than ψeϕe(ne) are allowed to be
appointed as witnesses of Ri for i > e to preserve Re from disturbance by lower
priority Ri. �

The relationship among the classes discussed cab be summarized by the follow-
ing diagram

EC �
CE

co-CE � SC � DCE � DBC � CA.
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They form a proper finite hierarchy of ∆0
2-reals. The classes EC,DCE,DBC and

CA are closed fields.

3. Ershov’s hierarchy

Ershov’s hierarchy [9] of ∆0
2-subsets of natural numbers can be transferred to

reals straightforwardly if any real number is appointed to a set. Thus, by means
of binary expansion and Dedekind cut representations, we can introduce two hier-
archies of reals of Ershov’s type.

3.1. Binary computability

Since any real x corresponds naturally to its binary expansion set A in the
sense that x = xA, the Ershov’s hierarchy on sets can be transferred to the ∆0

2-
reals straightforwardly as follows.

Definition 3.1 (Zheng and Rettinger [34]). Let h be a function. A real x is
h-binary computable if x = xA for an h-c.e. set A.

The k-binary computable for any constant k and ω-binary computable reals
are defined accordingly. Let k-bEC (for k ∈ N), ω-bEC and h-bEC denote the
classes of all k-, ω- and h-binary computable reals, respectively. In addition,
the class

⋃
k∈N k-bEC is denoted by ∗-bEC. By Ershov’s hierarchy theorem, we

have an infinite hierarchy k-bEC � (k + 1)-bEC � ∗-bEC � ω-bEC � CA
for all constant k. Obviously, 1-bEC is the class of strongly c.e. reals and hence
1-bEC � CE. Furthermore, we have

Theorem 3.2 (Zheng and Rettinger [34]).
(1) k-bEC � SC for k ≥ 2;
(2) CE � ∗-bEC and ∗-bEC � DCE;
(3) ω-bEC is incomparable with DCE.

Proof.
1. Let A,B be two Turing incomparable c.e. sets. Then the join A ⊕ B is

obviously a 2-c.e. set and hence the real xA⊕B is 2-binary computable. But it is
not semi-computable because of Theorem 2.4. This means that 2-bEC � SC and
hence k-bEC � SC for all k ≥ 2.

2. By Theorem 2.3, there exists an ω-stably c.e. real x which is not k-stably
c.e. for any k ∈ N. Thus, x is c.e. but not k-binary computable and hence CE �
∗-bEC.

For the second part of item 2, it suffices to prove the inclusion part. Assume
by induction hypothesis that k-bEC ⊆ DCE for some k ∈ N. Let A ⊆ N be a
(k+1)-c.e. set. Then there exist a c.e. set B and a k-c.e. set C such that A = B\C.
Obviously, the set B ∪ C is k-c.e. too. Then, both xB∪C and xC are k-binary
computable and hence are d-c.e. by induction hypothesis, i.e., xB∪C , xC ∈ DCE.
Since the class DCE is closed under subtraction and xA = xB\C = x(B∪C)\C =
xB∪C − xC , xA is d-c.e. too. Therefore (k + 1)-bEC ⊆ DCE.
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3. DCE �⊆ ω-bEC follows from Theorem 2.8. To prove ω-bEC �⊆ DCE, we
can choose by Ershov’s hierarchy theorem an ω-c.e. set A which is not λn.23n-
c.e. Then the set 2A is obviously also an ω-c.e. set and hence x2A is ω-binary
computable. However x2A is not d-c.e. by Theorem 2.10. �

Thus, any class k-bEC, for k ≥ 2, is incomparable with the classes of CE and
SC. Moreover, since ω-bEC contains CE but not its arithmetical closure DCE,
ω-bEC is not closed under addition and subtraction. It is also not difficult to see
that, all classes k-bEC for k > 0 are not closed under addition and subtraction
too.

3.2. Dedekind computability

The Ershov’s hierarchy of ∆0
2-subsets of natural numbers can be easily extended

to the subsets of dyadic rational numbers. Of course, we have to consider functions
h : D → N for the h-c.e. sets of dyadic rational numbers. Thus, the Ershov’s
hierarchy can be transferred directly to reals by means of Dedekind cuts as follows.

Definition 3.3 (Zheng and Rettinger [34]). Let h : D → N be a function. A real
x is called h-Dedekind computable if its Dedekind cut Lx is h-c.e.

The k- (for k ∈ N), ∗- and ω-Dedekind computability are defined accordingly.
The classes of h-, k- ∗- and ω-Dedekind computable reals are denote by h-dEC,
k-dEC, ∗-dEC and ω-dEC, respectively. By definition, the class 1-dEC is equal to
CE and any semi-computable real is obviously 2-Dedekind computable. However,
other classes k-dEC for any k ≥ 2 collapse to the second level 2-dEC.

Theorem 3.4 (Zheng and Rettinger [34]).
(1) k-dEC = SC for k ≥ 2;
(2) ω-bEC = ω-dEC.

Proof.
1. It suffices to prove that ∗-dEC ⊆ SC. Let x ∈ ∗-dEC and k := min{n :

x ∈ n-dEC}. If k < 2, then we are done. Suppose now that k ≥ 2. By choice
of k, the Dedekind cut Lx := {r ∈ D : r < x} is k-c.e. but not (k − 1)-c.e. Let
(As) be a computable k-enumeration of Lx. Then there are infinitely many r ∈ D
such that |{s ∈ N : r ∈ As+1∆As}| = k where ∆ is the symmetric set difference
defined by A∆B := (A \ B) ∪ (B \ A). Then the set Ok := {r ∈ D : |{s ∈ N : r ∈
As+1∆As}| = k} is an infinite c.e. set. If k is even, then r /∈ Lx for any r ∈ Ok

(remember A0 = ∅) and hence x ≤ r. Then we can show that inf Ok = x holds
and hence x is co-c.e. Similarly, if k is odd, then x is c.e. Therefore, ∗-dEC ⊆ SC.

2. “ω-bEC ⊆ ω-dEC ”: Let xA ∈ ω-bEC. There is a computable function
h and a computable h-enumeration (As) of A. We are going to show that xA ∈
ω-dEC. To this end, let Es := {r ∈ Ds : r ≤ xAs} for all s, where Ds := {n · 2−s :
n ∈ Z} is the set of all dyadic rational numbers of precision s. We identify a dyadic
rational number r with a binary word in the sense that r =

∑
i<l(r) r(i) · 2−(i+1)

where l(r) is the length of the word r and identify a set A with its characteristic
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sequence. Then r < xA, iff r <L A, iff (∀∞s)(r ≤L As), iff (∀∞s)(r ∈ Es), iff
r ∈ E := lims→∞ Es, where <L is the length-lexicographical ordering of binary
words and sequences. Thus, the limit E := limsEs is the left Dedekind cut of the
real xA. On the other hand, for any r ∈ D and any s, t ∈ N, if As � l(r) = At � l(r),
then r ≤L xAs ⇐⇒ r ≤L xAt and hence r ∈ Es ⇐⇒ r ∈ Et. That is, if the
membership of r to Es is changed, there must be a numbers n < l(r) such that
As(n) changes. Since (As) is a computable h-enumeration of A, the sequence (Es)
is a computable g-enumeration of E, where g : D → N is a computable function
defined by g(r) :=

∑
i≤l(r) h(i). Thus, x is a g-Dedekind computable and hence

an ω-Dedekind computable real.
“ω-dEC ⊆ ω-bEC”: Suppose that x := xA is ω-Dedekind computable. That

is, there is a computable function h and a computable sequence (Es) of finite sets
of dyadic rational numbers such that (Es) is a computable h-enumeration of the
left Dedekind cut Lx of xA. Suppose w.l.o.g. that, for any s, if σ ∈ Es, then
τ ∈ Es for any τ such that l(τ) ≤ l(σ) and τ ≤L σ. Let rs be the maximal
element of Es and As := {n : rs(n) = 1}, i.e., rs = xAs for any s. Then, we
have lims→∞ xAs = lims→∞ rs = xA and hence lims→∞As = A. Since (As) is
obviously a computable sequence of finite subsets of natural numbers, it suffices
to show that there is a computable function g such that (As) is a g-enumeration
of A. Now we define the computable function g : N → N inductively as follows.

For any n ∈ N. suppose that g(m) is defined for any m < n. To define
g(n), let’s estimate first how many times As(n) can be changed for different s
at all. Let σ be a binary word of the length n. If there are s < t such that
As � n = At � n = σ and n /∈ As & n ∈ At. Then, we have rs = xAs < σ1
and σ1 ≤ xAt = rt. Here we regard the binary word σ1 as a dyadic rational
number. This implies that σ1 /∈ Es and σ1 ∈ Et by the choice of the sequence
(Es). Similarly, for the case n ∈ As & n /∈ At, we have σ1 ∈ Es and σ1 /∈ Et.
Since (Es) is an h-enumeration of Lx, there are at most h(σ1) non-overlapping
pairs (s, t). This means that, for any s < t, if n ∈ As∆At and As � n = At � n = σ,
then σ1 ∈ Es∆Et. Therefore, As(n) can be changed at most g(n) times where
g(n) is defined by g(n) :=

∑{g(m) : m < n} +
∑ {h(σ1) : σ ∈ {0, 1}n}. Thus,

(As) is a computable g-enumeration of A and hence A is an ω-c.e. set, because g
is obviously a computable function. That is, xA is ω-binary computable. �

In summary, the k-binary computability and the k-Dedekind computability
are incomparable, for any k ≥ 2 or k := ∗. But the ω-binary and Dedekind
computability are equivalent.

4. Hierarchies based on divergence bounding

In the definitions of binary and Dedekind computability, we looked at the pos-
sible changes of bits in binary expansion and the changes of memberships of a
dyadic rational numbers to the Dedekind cut, respectively. These reflect somehow
the different levels of effectivity of reals. If we consider Cauchy sequence represen-
tation, the effectivity levels of reals can be classified according to how fast a real
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be approximated. A possible way to measure the convergence speed of a sequence
is to count its big jump. Depending on two different ways how the big jumps are
defined, we introduce in this section two hierarchies. To distinguish them clearly,
they are called (without special reason) h-Cauchy computability and h-bounded
computability, respectively.

4.1. Cauchy computability

If a sequence (xs) converges effectively, then |xi − xj | ≤ 2−n for any i, j ≥ n.
Thus, the pairs (i, j) with i, j ≥ n such that |xi−xj | > 2−n are the annoying factor
which possibly destroy the computability of its limit. Such pairs are called big
jumps. It is natural to anticipate, that the less big jumps a sequence possesses, the
better computability its limit could have. Since 2−n converges to 0 (for n → ∞),
there is no constant upper bound of numbers of jumps (i, j) such that |xi − xj | ≥
2−n for all n if the sequence (xs) is not trivial. However, such kind constant bound
seems very important for a hierarchy of Ershov’s type. Therefore, we consider only
the jumps of sizes between 2−n and 2−n+1 firstly.

Definition 4.1 (Zheng and Rettinger [34]). Let i, j, n ∈ N and let (xs) be a
sequence of reals converging to x and h : N → N be a function.

(1) A pair (i, j) is an n-jump of (xs) if 2−n < |xi − xj | ≤ 2−n+1 and i, j ≥ n;
(2) the sequence (xs) converges to x h-effectively if, for any n ∈ N, the number

of non-overlapping n-jumps of (xs) is bounded by h(n);
(3) the real x is h-Cauchy computable if there is a computable sequence (xs)

of rational numbers which converges to x h-effectively.

Other types of Cauchy computability can be defined accordingly and the classes
of h-, k- (k ∈ N), ∗- and ω-Cauchy computable reals are denoted, respectively,
by h-cEC, k-cEC, ∗-cEC and ω-cEC. By definition, it is easy to see that 0-, and
ω-Cauchy computable reals are just the computable and divergence bounded com-
putable reals, respectively, i.e., 0-cEC = EC and ω-cEC = DBC. In addition, for
any rational number a and any function h, we have x ∈ h-cEC iff a− x ∈ h-cEC.

Now we show a general hierarchy theorem for Cauchy computability.

Theorem 4.2 (Zheng and Rettinger [34]). If f, g : N → N are total computable
functions such that f(n) < g(n) for infinitely many n, then g-cEC � f -cEC.

Proof. We construct a computable sequence (xs) of rational numbers which con-
verges g-effectively to a non-f -Cauchy computable real x. Thus, x satisfies all
requirements Re: “if (ϕe(s))s converges f -effectively to ye, then x �= ye”, where
(ϕe) is an effective enumeration of all computable partial functions ϕe :⊆ N → Q.

The strategy to satisfy a single requirement Re is quite straightforward. Let
Ie := [a, b] be a rational interval with length 2−ne+2 for some ne ∈ N such that
f(ne) < g(ne). Divide it equally into four subintervals Ii := [ai, ai+1], for i < 4,
of length 2−ne . Let b1 := a0 + 3 · 2−(ne+2) and b2 := a2 + 2−(ne+2). Notice that,
2−ne < 2−ne + 2−(ne+1) = |b1 − b2| < 2−ne+1. Define xs := b1 as long as the
sequence (ϕe(s))s does not enter the interval I1. Otherwise, if ϕe(s) enters into
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the interval I1 for some s ≥ ne, then let xs := b2. Later on, if ϕe(t) enters I3 for
some t > s, then let xt := b1 again, and so on. If (ϕe(s))s converges f -effectively,
then (xs) can be changed at most f(ne) + 1 ≤ g(ne) times. This guarantees that
the sequence (xs) converges g-effectively and limxs �= lims ϕe(s). To satisfy all
the requirements simultaneously, we use a finite injury priority construction �

Thus, we have an Ershov-type hierarchy that k-cEC � (k+1)-cEC � ∗-cEC �
ω-cEC for any k ∈ N. In addition, any k-Cauchy computable real (for k ∈ N) is
d-c.e., because any k-effectively convergent sequence converges weakly effectively
too. On the other hand, all classes k-cEC (k > 0) are not comparable with CE
and SC according to the following theorem.

Theorem 4.3 (Zheng and Rettinger [34]). The class k-cEC is incomparable with
the classes CE and SC for any k > 0.

Proof. It suffices to show that 1-cEC � SC and CE � ∗-cEC.
Let A and B be Turing incomparable c.e. sets and let (As) and (Bs) be their

computable enumerations, respectively. Suppose w.o.l.g. that A0 = B0 = ∅,
A2s = A2s+1 & |B2s+1 \ B2s| = 1 and |A2s+2 \ A2s+1| = 1& B2s+1 = B2s+2 for
all s. Let xs := xAs⊕Bs

for any s ∈ N. Then (xs) is a computable sequence of
rational numbers converging 1-effectively to xA⊕B which is not semi-computable
by Theorem 2.4. That is, xA⊕B ∈ 1-cEC \ SC.

For CE � ∗-cEC, we construct an increasing computable sequence (xs) of
rational numbers whose limit x := lims xs is not k-Cauchy computable for any
k ∈ N. That is, x satisfies, for all i, j ∈ N, the requirements R〈i,j〉: “if (ϕi(s))s

converges j-effectively ye, then x �= ye”, where (ϕi) is an effective enumeration of
all computable partial functions ϕi :⊆ N → Q.

To satisfy a single requirement Re for e = 〈i, j〉, we choose a rational interval
[a; b]. Let n be the minimal natural number such that 2n ≥ 3(j + 1)/(b − a).
Define ai := a + i · 2−n for i ≤ 3(j + 1) and a3(j+1)+1 = b. Then the intervals
Ii := [ai; ai+1] have length 2−n for any i < 3(j + 1). We define x0 as the middle
point of the interval I1. If ϕi(s) enters I1 for some s ≥ n, then define xs as the
middle point of the interval I4. If there is a t > s such that ϕi(t) ∈ I4, then define
xt as the middle point of the interval I7, and so on. In general, if xs1 ∈ I3k+1

and ϕi(s2) ∈ I3k+1 for some s2 > s1, then redefine xs2 as the middle point of
I3k+4. If (ϕi(s))s converges j-effectively, then we can always find a correct x
which differs from the limit lims ϕi(s), because ϕi(s1) ∈ I3k+1 and ϕi(s2) ∈ I3k+4

implies that 2−n+1 ≤ |ϕi(s1) − ϕi(s2)| ≤ 2−n+2. To satisfy all requirements, it
succeeds to apply the above strategy to an interval tree and use the finite injury
priority construction. We omit the details here. �

We have seen that both classes 0-cEC and ω-cEC are fields. However, the next
theorem shows that all other classes of Cauchy computable reals are not closed
under addition and subtraction.

Theorem 4.4 (Zheng and Rettinger [34]). There are x, y ∈ 1-cEC such that
x − y /∈ ∗-cEC. Therefore, k-cEC and ∗-cEC are not closed under addition and
subtraction for any k > 0.
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Proof. We construct two computable increasing sequences (xs) and (ys) of rational
numbers which converge 1-effectively to x and y, respectively, while their difference
z := x − y is not ∗-cEC. That is, z satisfies all requirements R〈i,j〉: “if (ϕi(s))s

converges j-effectively to yi, then yi �= z”, where (ϕi) is an effective enumeration
of all partial computable functions ϕi :⊆ N → Q.

To satisfy a single requirement Re for e := 〈i, j〉, we choose two natural numbers
ne and me large enough such that ne < me and me − ne ≥ j + 3. Let’s begin
with xs = ys = zs = 0. Whenever |zs − ϕi(t)| < 2−(me+2) (for zs = xs − ys)
holds for some t ≥ m2, we increase (xs, ys) by (2−(ne+1) + 3 · 2−(me+1), 2−(ne+1))
or (2−(ne+1), 2−(ne+1) +3 ·2−(me+1)) alternatively so that |zs − zs+1| = 3/2 ·2−me.
We need at most j + 1 times of such action to satisfy Re, if (ϕi(s)) converges
j-effectively. �

Similar to the binary computability, Cauchy computability leads also to an
infinite hierarchy by Theorem 4.2. However, they are not equivalent in almost all
levels.

Theorem 4.5 (Zheng and Rettinger [34]).

(1) ω-bEC � ω-cEC; and
(2) k-bEC � k-cEC for any k ≥ 1 or k = ∗.

Proof.
1. Since ω-cEC is closed under arithmetical operations but ω-bEC not, it

suffices to prove the inclusion ω-bEC ⊆ ω-cEC. For any xA ∈ ω-bEC, there
is a computable function h and a computable h-enumeration (As) of A. Notice
that, if As � n = At � n, then |xAs − xAt | ≤ 2−n for any s, t and n. This means
that, the computable sequence (xs) defined by xs := xAs for all s converges to
xA g-effectively, where g is a computable function defined by g(n) :=

∑
i≤n h(i).

Thus, xA ∈ ω-cEC.
2. We prove only the inequality and it suffices to prove 1-cEC � ∗-bEC.

We will construct a computable sequence (xs) of rational numbers which con-
verges 1-effectively to a non-∗-cEC real xA, i.e., A is not k-c.e. for any constant k
and hence satisfies all requirements R〈i,j〉: “if (Wi,s)s∈N is a j-enumeration, then
lims→∞Wi,s �= A”, where (We) is a computable enumeration of all c.e. subsets
of N and (We,s) is its uniformly computable approximation. The strategy to sat-
isfy a single requirement Re for e = 〈i, j〉 is as follows. We choose an interval
Ie = [ne,me] of natural numbers such that me − ne > 2j. This interval is pre-
served exclusively for the requirement Re. At the beginning, let x0 := 2−ne (ne is
put into A). If at some stage s0, ne enters Wi,s0 , then define xs0+1 := xs0 − 2−me

(ne leaves A) and let me := me − 1. If at a later stage s1 > s0, ne leaves Wi,
then define xs1+1 := xs1 + 2−me (ne enters A) and let me := me − 1, and so on.
We take this action at most j times. Thus, if (Wi,s)s∈N is a j-enumeration, then
Re will be satisfied eventually. The sequence (xs) defined in this way converges
obviously 1-effectively. �
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4.2. h-bounded computability

The Cauchy computability discussed in Subsection 4.1 leads to an Ershov-type
hierarchy. However, the definition of n-jumps in Definition 4.1 seems quite ar-
tificial. There is no reason to consider only the number of jumps between 2−n

and 2−n+1. More naturally, we can count all the jumps larger than, say 2−n.
This leads to another Cauchy computability in this subsection. In this case, we
can also show a general hierarchy theorem and a lot of nice analytical properties.
Nevertheless, the Ershov-type hierarchy does not hold any more.

Definition 4.6 (Zheng [30]). Let h : N → N be a function, C be a class of
functions, and (xs) a sequence of rational converging to x.

(1) (xs) converges to x h-bounded effectively if there are at most h(n) non-
overlapping index-pairs (i, j) such that |xi − xj | > 2−n for all n;

(2) x is h-bounded computable (h-bc) if there is a computable sequence of
rational numbers which converges to x h-bounded effectively;

(3) x is C-bounded computable (C-bc) if it is h-bc for some h ∈ C.

The classes of h-bc and C-bc reals are denoted by h-BC and C-BC, respectively.
Obviously, if C is the class of all computable functions, then C-BC = DBC. Thus,
divergence bounded computable reals are also called ω-bounded computable, or
simply ω-bc (ω-BC for the class). On the other hand, if lim inf h(n) < ∞, then
only rational numbers can be h-bc, i.e., h-BC = Q. Therefore, we cannot antic-
ipate an Ershov-type hierarchy in this case. Actually, even the class EC cannot
be characterized as C-BC for any class C of functions. Notice that, although any
computable real is id-bc, i.e., EC ⊆ id-BC for the identity function id, there is an
h-bc real which is not computable for any unbounded nondecreasing computable
function h.

Moreover, if there is a constant c such that |f(n) − g(n)| ≤ c for all n, then
f -BC = g-BC. This means that a general hierarchy theorem like Theorem 4.2
does not hold neither. Nevertheless, we have another version of hierarchy theorem
as follows which implies, e.g., f -BC � g-BC if the computable functions f, g
satisfy f ∈ o(g).

Theorem 4.7 (Zheng [30]). If f, g : N → N are computable and satisfy the con-
dition (∀c ∈ N)(∃m ∈ N)(c+ f(m) < g(m)), then g-BC � f -BC.

Proof. We construct a computable sequence (xs) of rational numbers converging g-
bounded effectively to some real x which satisfies all requirements Re: “if (ϕe(s))
converges f -bounded effectively to ye, then ye �= x”, where (ϕe) is an effective
enumeration of the partial computable functions ϕe :⊆ N → Q. That is, x is not
f -bc. The idea to satisfy a single requirement Re is as follows. We choose an
interval I and a natural number m such that f(m) < g(m). Choose further two
subintervals Ie, Je ⊂ I which have at least a distant 2−m. Then we can find a real
x either from Ie or Je to avoid the limit ye of the sequence (ϕe(s)) if it converges
f -bounded effectively. To satisfy all the requirements simultaneously, we use a
finite injury priority construction. �
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Almost all classes of Cauchy computability hierarchy discussed in Section 4.1
are not closed under addition and subtraction. However, by the next theorem a
lot of classes C-BC are closed under the arithmetic operations.

Theorem 4.8 (Zheng [30]). Let C be a class of functions f : N → N. If, for any
f, g ∈ C and c ∈ N, there is an h ∈ C such that f(n + c) + g(n + c) ≤ h(n) for
all n, then C-BC is a field.

Proof. Let f, g ∈ C. If (xs) and (ys) are computable sequences of rational numbers
which converge to x and y f - and g-bounded effectively, respectively. By triangle
inequations the computable sequences (xs +ys) and (xs−ys) converge h1-bounded
effectively to x+ y and x− y, respectively, for the function h1 defined by h1(n) :=
f(n+ 1) + g(n+ 1).

For the multiplication, choose a natural number N such that |xn|, |yn| ≤ 2N

and define h2(n) := f(N +n+ 1)+ g(N +n+ 1) for any n ∈ N. If |xi − xj | ≤ 2−n

and |yi − yj| ≤ 2−n, then |xiyi −xjyj | ≤ |xi||yi − yj|+ |yj||xi −xj | ≤ 2N · 2−n+1 =
2−(n−N−1). This means that (xsys) converges h2-bounded effectively to xy.

Now suppose that y �= 0 and w.l.o.g. that ys �= 0 for all s. Let N be a natural
number such that |xs|, |ys| ≤ 2N and |ys| ≥ 2−N for all s ∈ N. If |xi − xj | ≤ 2−n

and |yi − yj | ≤ 2−n, then |xi/yi − xj/yj| = |(xiyj − xjyi)/(yiyj)| ≤ (|xi||yi − yj |+
|yj ||xi − xj |)/(|yiyj |) ≤ 23N · 2−n+1 = 2−(n−3N−1). That is, the sequence (xs/ys)
converges h3-bounded effectively to (x/y) for the function h3 : N → N defined by
h3(n) := f(3N+n+1)+g(3N+n+1). Since the functions h1, h2, h3 are bounded
by some functions of C, all x+ y, x+ y, xy and x/y are C-bc and hence the class
C-BC is closed under arithmetical operations +,−,× and ÷. �

As examples of class C which satisfy the condition of Theorem 4.8, we have
Lin := {λn.(c · n + d) : c, d ∈ N}; Log(k) := {λn.(c logk(n) + d) : c, d ∈ N};
Poly := {λn.(c ·nd) : c, d ∈ N}; Exp1 := {λn.(c ·2n) : c ∈ N}, etc. Notice that, the
classes Lin-BC, Logk-BC and Poly-BC are all fields which do not even contain all
c.e. reals. On the other hand, Exp1-BC is a field which contains CE and hence
DCE. The next theorem shows that there is a smaller class o(2n)-BC which
contains DCE properly. If oe(2n) denotes the class of all computable function
f ∈ o(2n), then oe(2n)-BC does not contain CE any more.

Theorem 4.9 (Zheng [30]). SC � oe(2n)-BC and DCE � o(2n)-BC.

Proof. To prove SC � oe(2n)-BC, we construct an increasing computable se-
quence (xs) of rational numbers converging to x which satisfies all requirementsRe:
“if ϕi and ψj are total functions and ψj ∈ o(2n) and (ϕi(s)) converges ψj-bounded
effectively to yi then x �= yi”, where (ϕe) and (ψe) are effective enumerations of
all partial computable functions ϕe :⊆ N → Q and ψe :⊆ N → N, respectively.

To satisfy a single requirement Re (e = 〈i, j〉), we choose a rational interval
Ie−1 of length 2−me−1 for some natural number me−1. Then we look for a witness
interval Ie ⊆ Ie−1 of Re such that each element of Ie satisfies Re. At the beginning,
the interval Ie−1 is divided into four equidistant subintervals J t

e for t < 4 and let
Ie := J1

e as the (default) candidate of witness interval of Re. If the function ψj is
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not a total function such that ψj ∈ o(2n), then we are done. Otherwise, there exists
a natural number me > me−1 +2 such that 2(ψj(me)+2) ·2−me ≤ 2−(me−1+2). In
this case, we divide the interval J3

e (which is of length 2−(me−1+2)) into subintervals
It
e of length 2−me for t < 2me−(me−1+2) and let Ie := I1

e as a new candidate of
witness interval of Re. If the sequence (ϕi(s)) does not enter the interval I1

e at all,
then it is a correct witness interval. Otherwise, suppose that ϕi(s0) ∈ I1

e for some
s0 ∈ N. Then we change the witness interval to be I3

e . If ϕi(s1) ∈ I3
e for some

s1 > s0, then let Ie := I5
e , and so on. This can happen at most ψj(me) times if the

sequence (ϕi(s)) converges ψj-bounded effectively. To satisfy all the requirements
Re simultaneously, a finite injury priority construction suffices.

The inclusion DCE ⊆ o(2n)-BC follows immediately from the fact that any
bounded increasing sequence converges h-bounded effectively for some h ∈ o(2n).
To show that DCE �= o(2n)-BC, we construct a computable sequence (xs) of
rational numbers and a (non-computable) function h ∈ o(2n) such that the se-
quence (xs) converges h-bounded effectively to a real x which satisfies all require-
ments Re: “if ϕe is a total function, and

∑
s∈N |ϕe(s) − ϕe(s + 1)| ≤ 1, then

lims→∞ ϕe(s) �= x”, where (ϕe) is an effective enumeration of all partial com-
putable functions ϕe :⊆ N → Q. The strategy to satisfy a single requirement
Re is quite simple. Namely, we choose two rational intervals Ie and Je such that
they have a distance 2−me for some natural number me. Then we choose the
middle point of Ie as x whenever the sequence (ϕe(s)) does not enter the in-
terval Ie. Otherwise, we choose the middle of Je which can be changed later if
the sequence (ϕe(s)) enters the interval Je, and so on. Because of the condition∑

s∈N |ϕe(s) − ϕe(s + 1)| ≤ 1, we need at most 2me changes. By a finite injury
priority construction, this works for all requirements simultaneously. However, the
real x constructed in this way is only a 2n-bounded computable real. To guarantee
the o(2n)-bounded computability of x, we need several me’s instead of just one.
That is, we choose at first a natural number me > e, two rational intervals Ie and
Je and implement the above strategy, but at most 2me−e times. Then we look for
a new m′

e > me and apply the same procedure up to 2m′
e−e times, and so on. This

means that, in worst case, we need 2e different me’s to satisfy a single requirement
Re. We can see that the finite injury priority technique can still be applied. �

By Theorem 4.9, we have DCE � oe(2n)-BC, However, it is not clear yet,
whether oe(2n) ⊆ DCE hold.

5. Monotone computability hierarchy

The convergence speed of a sequence can also be measured by comparing the
absolute error-estimation at different stages. This leads to another hierarchy of
∆0

2-reals.

Definition 5.1 (Rettinger and Zheng [15]). Let h : N → R be a function. A real
x is called h-monotonically computable (h-mc) if there is a computable sequence
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(xs) of rational numbers which converges to x h-monotonically in the sense that

(∀n,m ∈ N)(n < m =⇒ h(n)|x − xn| ≥ |x− xm|). (3)

If h = λn.c for a constant c ∈ R, then any h-mc reals are called c-mc. We
call a real monotonically computable (mc) if it is c-mc for some constant c and ω-
monotonically computable (ω-mc) if it is h-mc for a computable function h : N → N.
The classes of h-mc, c-mc, mc and ω-mc reals are denoted by h-MC, c-MC,MC
and ω-MC, respectively.

5.1. c-MC and dense hierarchy

By definition, we have obviously 0-MC = Q, 1-MC = SC and c-MC = EC
for 0 < c < 1. Moreover, c1-MC ⊆ c2-MC hold for any constants c2 ≥ c1. The
next theorem shows that this inclusion is proper if c2 > c1 ≥ 1.

Theorem 5.2 (Rettinger and Zheng [15]). For any real constants c2 > c1 ≥ 1,
c1-MC � c2-MC.

Proof. Because of the density of Q in R, it suffices to consider the rational numbers
c2 > c1 > 1. We construct a computable sequence (xs) of rational numbers
which converges c2-monotonically to a non-c1-mc real x. That is, x satisfies all
requirements Re: “if (ϕe(s))s converges to ye c1-monotonically, then x �= ye”,
where (ϕe) is a computable enumeration of computable functions ϕi : N → Q. To
satisfy a single requirement Re, we choose a rational interval I and divide it into
seven subintervals Ii for i < 7 such that

x ∈ I1 & x1 ∈ I3 & x2 ∈ I5 =⇒ c1|x− x1| < |x− x2| (4)

and, for any (i, j, k) ∈ {(1, 3, 5), (1, 3, 3), (1, 5, 5), (5, 3, 3)},

x ∈ Ii & x1 ∈ Ij & x3 ∈ Ik =⇒ c2|x− x1| ≥ |x− x2|. (5)

As long as the sequence (ϕe(s))s does not enter the interval I3, we choose an xs

from I3. If ϕe(s1) ∈ I3 for some s1, then we choose an xs1 from I5. Moreover, if
there is another s2 > s1 such that ϕe(s2) ∈ I5, then we choose an xs2 from I1.
Thus, the sequence (xs) changes at most two times and converges to an limit x
c2-monotonically because of condition (4). If x is in I3 or I5, then the sequence
(ϕe(s))s does not converge to x at all. For the case x ∈ I1, the sequence (ϕe(s))s

can not converge c1-monotonically to x because of condition (5). In any case, the
limit x satisfies the requirement Re. To satisfy all requirements simultaneously, a
finite injury priority construction suffices. �

Theorem 5.2 implies immediately that SC � MC. Furthermore, it is shown in
[15] that, every c-mc real is d-c.e. and there exists a d-c.e. real which is not c-mc
for any constant c. That is we have

Theorem 5.3 (Rettinger and Zheng [15]). SC � MC � DCE.
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5.2. ω-monotone computability

The hierarchy theorem for c-mc reals cannot be extended to h-mc reals in
general because all unbounded monotone function h corresponds to the same class
of h-mc reals.

Theorem 5.4 (Zheng, Rettinger and Barmpalias [36]). If h is a monotone and
unbounded computable function, then h-MC = ω-MC.

Proof. Let g be a computable function and let (xs) be a computable sequence of
rational numbers which converges g-monotonically to x. Since h is unbounded,
there is an increasing computable sequence (ns) such that h(ns) ≥ g(s) for all s.
Let n(s) be the maximal i such that ni ≤ s and ys := xn(s). For any s < t, if
n(s) = n(t), i.e., there is an i such that ni ≤ s < t < ni+1 and n(s) = i, then
h(s)|x−ys| = h(s)|x−xi| ≥ |x−xi| = |x−yt|. Otherwise, if n(s) < n(t), then there
are i < j such that ni ≤ s < nj ≤ t and n(s) = i < j = n(t). Since h is increasing,
this implies that h(s)|x − ys| ≥ h(ni)|x − xi| ≥ g(i)|x − xi| ≥ |x − xj | = |x − yt|.
Therefore, the computable sequence (ys) converges to x h-monotonically and hence
x is h-mc. �

Theorem 5.5 (Zheng, Rettinger and Barmpalias [36]). The class of ω-mc reals
is incomparable with DCE and DBC.

Proof. DCE � ω-MC: it suffices to construct a computable sequence (xs) of
rational numbers which converges weakly effectively to a non-id-mc real x. That is,∑

s∈N |xs−xs+1| ≤ 2 and x satisfies all requirements Re that “if (ϕe(s))s converges
id-monotonically to ye, then x �= ye”, where (ϕe) is a computable enumeration of
computable functions ϕe :⊆ N → Q. To satisfy a single requirement Re, we fix a
rational interval (a, b). At any stage s, let xs be the middle point of (a, b) as long as
there are no t1 < t2 such that ϕe,s(t1), ϕe,s(t1) ∈ (a, b). Otherwise, let (a1, b1) :=
(ϕe(i1)−δ, ϕe(t1)+δ), where δ := min{|ϕe(t1)−ϕe(t2)|/(t1+1), (ϕe(t1)−a)/2, (b−
ϕe(t1))/2, 2−4e}. Then we define xs as the middle poind of the interval (a1, b1).
Since the sequence (ϕe(s))s does not converge id-monotonically to any element
of (a1, b1), this xs satisfies Re. By priority technique, all requirements can be
satisfied simultaneously. Because the new interval (a1, b1) has a length less than
2−4e, the constructed sequence converges weakly effectively.
ω-MC � DBC: we construct a computable function h : N → N and a com-

putable sequence (xs) of rational numbers converging h-monotonically to x which
satisfies all requirements R〈i,j〉: “If (ϕi(s))s converges αj-bounded effectively to y,
then x �= y”, where (ϕe) and (αe) are computable enumerations of computable
functions ϕe : N → Q and αe : N → N, respectively. �

5.3. Computability and semi-computability of h-MC reals

Now let’s look at h-mc reals for computable functions h : N → (0, 1]Q. Obvi-
ously, if there is a constant c < 1 such that h(n) ≤ c for all n, then h-MC = EC.
Therefore, we consider only the computable function h such that limn→∞ h(n) = 1.
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For any such h, we have h-MC ⊆ SC. Is it possible that h-MC is equal to EC or
SC? The next theorem gives the exact criteria when these can happen. Roughly
speaking, if h(n) converges to 1 “very slowly”, then h-MC = EC and if h(n)
converges 1 “very fast”, then h-MC = SC. Otherwise, h-MC is strictly between
EC and SC.

Theorem 5.6 (Zheng, Rettinger and Barmpalias [36]). For any computable func-
tion h : N → (0, 1]Q we have

(1) If
∑

n∈N(1 − h(n)) = ∞, then h-MC = EC;
(2) If

∑
n∈N(1 − h(n)) is computable, then h-MC = SC;

(3) If
∑

n∈N(1 − h(n)) is non-computable, then EC � h-MC � SC.

Proof.
1. Suppose that

∑
n∈N(1 − h(n)) = ∞ and hence

∏
n∈N h(n) = 0. First,

since h(n) �= 0 for all n, for any computable sequence (xs) of rational number
converging effectively to x, we can easily construct a computable subsequence
which converges to x h-monotonically. That is, EC ⊆ h-MC. On the other
hand, let (xs) be a computable sequence of rational numbers which converges h-
monotonically to x. That is, h(n)|x− xn| ≥ |x− xm| for any m > n. This implies
that |x − xn| ≤

∏
i≤n h(i)|x − x0|. Since limn→∞

∏
i≤n h(i) =

∏
n∈N h(n) = 0,

we can choose a computable subsequence of (xs) which converges to x effectively.
That is h-MC ⊆ EC.

2. Suppose that
∑

n∈N(1 − h(n)) = u and u is a computable real. We show
now that SC ⊆ h-MC. Since u is also co-c.e., there is a decreasing computable
sequence (us) of rational number which converges to u. If x is a c.e. real and (xs)
is an increasing computable sequence of rational numbers which converges to x.
Let (ys) be a computable sequence defined by ys := xs − us +

∑
i≤s(1 − h(i))

for all s. It is not difficult to see that (ys) is also increasing and satisfies ys+1 −
ys ≥ (x − ys)(1 − h(s)) and hence (ys) converges to x h-monotonically. That is,
SC ⊆ h-MC.

3. Suppose that
∑

n∈N(1 − h(n)) = u and u is not a computable real. We
first show that SC � h-MC. Notice that, for any h-mc c.e. real x, there exists
an increasing computable sequence of rational numbers which converges to x h-
monotonically. Now we are going to construct an increasing computable sequence
(xs) of rational numbers which converges to a non-h-mc real x. Namely x satisfies
all requirements Re: “if ϕe is an increasing total function and (ϕe(s)) converges
h-monotonically to ye, the ye �= x”, where (ϕe) is an effective enumeration of
computable functions ϕe :⊆ N → Q.

Let Σ5 := {0, 1, 2, 3, 4} and I be set of all rational subintervals of the interval
[0, 1]. We define at first an interval tree I : Σ∗

5 → I inductively by I(λ) := [0, 1] and
I(wi) := Ii for all w ∈ Σ∗

5 and i < 5, where (Ii)i<5 is an equidistant subdivision of
the interval I(w). The interval I(w) is denoted by [aw, bw] for any w ∈ Σ∗

5. Then
we have aw =

∑
i<|w| 5

−(i+1) · w[i] and bw = aw + 5−|w|.
To satisfy a single requirement Re we will try to find a witness interval J ⊆ [0, 1]

such that any point of J except endpoints satisfies the requirement Re. Suppose
that ϕe is increasing. At the beginning, let J := I(11). If the sequence (ϕe(s))
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does not enter I(11), then we are done. Otherwise, suppose that ϕe(s0) ∈ I(11) for
some s0. If there exists a t < s0 such that h(t)(a3 −ϕe(t)) < a3 −ϕe(t+ 1) holds,
then we change the witness interval to be I(3). In this case, for any x ∈ I(3), we
have h(t)(x−ϕe(t)) < x−ϕe(t+ 1) and hence I(3) is a correct witness interval of
Re. Otherwise, if the inequality h(t)(a3−ϕe(t)) ≥ a3−ϕe(t+1) holds for all t < s0,
then we choose I(131) to be a new candidate of witness interval. Analogously, if
there exists an s1 > s0 such that ϕe(s1) ∈ I(131), then we choose either I(3) or
I(1331) to be the new candidate of witness interval of Re, depending on whether
there exists a t < s1 such that h(t)(a3 − ϕe(t)) < a3 − ϕe(t + 1) holds, and so
on. Let’s look at the possible outcome of our construction. If the interval I(3) is
chosen as a witness interval at some stage, then we are done because the sequence
(ϕe(s)) does not converge to any element of I(3).

Otherwise, if I(3) has never been chosen as the witness interval of Re, then
there are two possibilities. Either there is a k ∈ N such that I(13k1) is chosen as a
candidate of witness interval and there does not exist s such that ϕe(s) ∈ I(13k1)
and hence I(13k1) is a correct witness interval of Re or each of the following
intervals I(11), I(131), I(1331), · · · is chosen to be a candidate of witness interval at
some stage. In the latter case, there exists a computable increasing sequence (sn)
of natural numbers such that ϕe(sn) ∈ I(13n1) for all n. This implies that the limit
ye := lims→∞ ϕe(s) = 5−1+3 ·∑∞

i=2 5−i is a computable real number. In addition,
by construction we have the inequality h(n)(a3−ϕe(n)) ≥ a3−ϕe(n+1) holds for
all n ∈ N. This is equivalent to (1−h(n))(a3−ϕe(n)) ≤ ϕe(n+1)−ϕe(n). Notice
that a3 − ϕe(n) > 5−1 for all n. Now we define a computable function g : N →
(0, 1)Q by g(n) := 1−5 ·(ϕe(n+1)−ϕe(n)) for all n which satisfies g(n) ≤ h(n) for
all n. On the other hand, we have

∑
n∈N(1−g(n)) = 5

∑
n∈N(ϕe(n+1)−ϕe(n)) =

5(ye −ϕe(0)). That is, the sum
∑

n∈N(1− g(n)) is a computable real number and
hence

∑
n∈N(1 − h(n)) is computable too. This contradicts the hypothesis on h.

This contradiction implies that only finitely many intervals can be chosen to be
the candidate of a witness interval of Re and the last one is a correct one. Thus,
a finite injury priority construction applies.

At the last, we prove that EC � h-MC. Since
∏

n∈N h(n) = c > 0 we can
choose a rational number q such that 0 < q < c. We are going to construct
an increasing computable sequence (xs) of rational numbers from [0, 1] which h-
monotonically converges to a non-computable real x. Let (ϕe) be an effective
enumeration of partial computable functions ϕe :⊆ N → N and δe := q · 2−(e+2).
The sequence (xs) is construct in stages. At the beginning, x0 := 0. At any stage
s+ 1, if there is a “non-used” (minimal) e ≤ s such that

(∃t ≤ s)
(
2−t < δe & ϕe,s(t) ≤ 1 − h(s)(1 − xs) + δe

)
, (6)

then define xs+1 := 1−h(s)(1−xs)+2δe. Otherwise, let xs+1 := 1−h(s)(1−xs). It
is not difficult to see that (xs) is increasing and converges h-monotonically to some
x. Furthermore, if ϕe is a total increasing function such that |ϕe(n)−ϕe(n+1)| ≤
2−(n+1) for all n, then limn→∞ ϕe(n) �= x. That is, x is a non-computable h-mc
real. �
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