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AUTOMATA, BOREL FUNCTIONS AND REAL NUMBERS
IN PISOT BASE

BENOIT CAGNARD! AND PIERRE SIMONNET!

Abstract. This note is about functions f : AY — B*“ whose graph
is recognized by a Biichi finite automaton on the product alphabet
A x B. These functions are Baire class 2 in the Baire hierarchy of Borel
functions and it is decidable whether such function are continuous or
not. In 1920 W. Sierpinski showed that a function f : R — R is Baire
class 1 if and only if both the overgraph and the undergraph of f are F,.
We show that such characterization is also true for functions on infinite
words if we replace the real ordering by the lexicographical ordering on
B®. From this we deduce that it is decidable whether such function are
of Baire class 1 or not. We extend this result to real functions definable
by automata in Pisot base.

Mathematics Subject Classification. 03D05, 68Q45, 68R15,
54HO05.

1. INTRODUCTION

Usually, numbers are represented in a positional number system, with a real
base 6 > 1 and digits from the alphabet A = Z([0,6]. So real numbers are
considered as infinite words on A with the most significant digit on the left. Then,
very often in computer arithmetic a carry propagates from right to left. In [6,16]
on-line algorithms are proposed to compute arithmetic expressions from left to
right. In general, on-the-fly algorithms process data in a serial manner from the
most significant to the least significant digit. These algorithms however use several
registers, each of them representing a correct prefix of the result, corresponding to
an assumed value of the carry. In [6,16] is presented a theoretical framework which
allows to easily obtain on the fly algorithms whenever it is possible. Frougny [12]
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shows that a function is on the fly computable if and only if it is computable by
a right subsequential finite state machine. The idea to read from left to right
in a right subsequential finite state machine suggests non-determinism. Moreover,
working on infinite words rather than finite words suggests discontinuity. A natural
hierarchy exists on discontinuous Borel functions, the Baire classes of functions. A
function f belongs to class 0 if it is continuous. A function f belongs to class 1 if
it is the pointwiselimit of a sequence of functions of class 0. A function f belongs
to class 2 if it is the pointwiselimit of a sequence of functions of class 1, and so on.
The present work studies from a topological point of view functions f : AY — B¥
whose graph is recognized by a Biichi finite automaton on the product alphabet
A x B. Topology and automata on infinite words have been heavily studied. It
is easy to see that our functions are of Baire class 2, we prove that we can decide
if they are of Baire class 1. We also prove this same result when numbers are
represented with a Pisot base. A Pisot number is an algebraic integer 6 which is
real and strictly exceeds 1, but such that its conjugate elements are all strictly less
than 1 in absolute value. For example, the natural integers greater than 2 and the
golden ratio are Pisot numbers. This extend the applicability of our result to the
domain of real numbers. Our proof uses an old result of Sierpinski on Baire class
1 functions and decidability results of Landweber. The set of points of continuity
of a function f on an infinite word is always a countable intersection of open sets
which is dense whenever f is of Baire class 1. We expect that our approach will
shed new light on the discussion in the field of on-the-fly algorithms. For this
reason we present a detailled study of the Booth canonical recoding on infinite
words. This function is an example of a discontinuous first class function.

The paper is organized as follows. First in Sections 2, 3, 4 we present some nec-
essary definitions and properties from automata theory and descriptive set theory.
In Section 5 we prove our decidability result on infinite words. In Section 6 we
study the Booth canonical recoding. In Section 7 we prove our decidability result
in the case where our functions define functions on real numbers represented with
a Pisot base. In the conclusion we advance our impressions on the asynchronous
case, that is to say the case of functions whose graph is recognized by a Biichi
automaton which transitions are labeled by couples of words (u,v) € A* x B*
instead of couples of letters (a,b) € A x B.

2. INFINITE WORDS ON A FINITE ALPHABET

We note w the set of natural numbers. Let A be a finite alphabet and < a linear
order on A. All alphabets that we consider will have at least two letters. We denote
a the smallest element (first letter) of A and z the greatest element. A finite word
u on the alphabet A is a finite sequence of elements of A, u = u(0)u(l)---u(n)
where all the u(i)’s are in A. The set of finite words on A will be denoted A*.
The length (number of letters) of a word u will be noted |u|. A particular word is
the empty word ¢, |e] = 0. The set AT is A* — {e}. With concatenation, A* is a
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monoid with unit element €. There is a natural order on A*: the lexicographical
ordering, still denoted by <.

Lemma 2.1. Let n be in w, we note A™ the set of words u € A* with |u| = n.
(i) For all m € w— {0}, every word v € A™ different of a” have an immediate
predecessor in A™ noted u, for the lexicographical ordering.

(it) For all n € w — {0}, every word u € A™ different of 2" have an immediate
successor in A™ noted w for the lexicographical ordering.

Proof. By induction on n the length of u. If u = vl with v € A~ and | € A then:
ifl£aorzzu=v(l—-1)andu=v({l+1),

ifl=a: u=wvzandw=v(a+1),

ifl=z2 u=v(z—1) and @ = Ta. O

An infinite word « on the alphabet A is an infinite sequence of elements of A,

a = a(0)a(l)---a(n)---. The set of infinite words on the alphabet A will be
noted A“. We note «[n] the finite word formed with the n first letters of the
infinite word «, «[0] = €, af[l] = a(0). The set A%, viewed as a product of

infinitely many copies of A with the discrete topology, is a metrizable space. It is
equipped with the usual distance d defined as follows. Let o, 5 € A%,

dla, ) = 1/2" with n =min{i € w | a(i) # B(i)} if a« #
dla, ) = 0if a=p.

The collection (uA“),ca- is a basis of clopen sets for this topology. Recall that
(A¥,d) is a compact metric space. The set A% is ordered by the lexicographical
ordering <.

3. AUTOMATA ON INFINITE WORDS

For all this section, see [20].

Definition 3.1. A Biichi (nondeterministic) automaton A is a 5-tuple: A =<
A,Q,I, T, F >, where A is a finite alphabet, @ is a finite set of states, I C @ is
the set of initial states, T C Q x A x @ is the set of transitions and F' C Q) the set
of final states.

A path c of label o in A is an infinite word ¢ = ¢(0)c(1)---c(n)--- € (Q x Ax Q)¥
so that Vn € w, ¢(n) is of the form (B(n),a(n),B(n + 1)) with 8(0) € I and
cn) eT.

c=00 2% B 25 By 2 L

Let us note Infinity(c) the set of states which appears infinitely many times in
c. An accepting path c is a path so that Infinity(c) (T # 0. An accepted word «
is a word such that exists an accepting path c of label . We say that the word «
is recognized by A for the Biichi condition.

The set of words recognized by a Biichi automaton A is noted L“(.A).
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Let us denote by P(Q) the power set of ). Notice that T can be viewed as
a partial function 6 : @ x A — P(Q) where d(p,a) = {q € Q | (p,a,q) € T}.
By defining d(p, ub) = qué(p’u) 5(q,b) and &(p,e) = {p}, § can be extended to a
partial function 6 : Q x A* — P(Q).

Example 3.2. Let A be the Biichi automaton on alphabet A = {0,1} x {0, 1},
with states @ = {1,2,3,4,5}, initial states I = {1, 3,4}, final states F = {1, 3,5}
and transitions

T= {(L (O’ 0), 1)’ (L (1’ 1), 2)’ (2a (Oa 0), 1)’ (2a (L 1), 2)a
(3,(1,1),3),(4,(0,0),4), (4,(1,1),4), (4, (0,1),5), (5,(1,0),5)}.

The graphical representation of A is given in Figure 1, the initial (resp. final)
states are represented using an ingoing (resp. outgoing) unlabeled arrow. This
automaton recognizes the graph of the function S : {0,1}* — {0,1}* defined by
S(a) = « if & has an infinite number of zeroes, S(1¢) = 1¢ and for all u € {0, 1}*,
S(u01¥) = ul0¥. Let po : {0,1}¥ — [0,1] defined by pz(a) = > 02, ;(—ﬁ One
can easily verify that for all a € {0,1}*, S(a) is the maximum lexicographic of
the binary representations of ug(a). S is known as normalization in base 2.

Definition 3.3. A Muller automaton A is a 5-tuple: A =< A,Q,I,T,F >, where
A is a finite alphabet, @ is a finite set of states, I C @ is the set of initial states,
T C Q x A xQ is the set of transitions and F C P(Q). The difference between
Biichi automata and Muller automata is the acceptance condition.

An infinite word o € A% is recognized by A if there is an infinite path ¢ of label
« so that Infinity(c) € F.

An automaton is called deterministic if it has an unique initial state and for
each state p and each letter a there exists at most one transition (p,a,q) € T. In
this case the partial transition function § can be can be viewed as § : Q@ x A — Q.
For all infinite word « there exist, then, at most one path ¢ of label a.

Consider the following logical language: the set V of the variables, its elements
noted by z, y, z... , a constant symbol 0 and a unary function s (as successor).
We define the set of the terms 7 by:

i) A variable is a term;
ii) 01is a term;
iii) if t € 7 then s(t) € 7.
Let P (as parts) another set of variables, this variables are noted X, ), Z... and
two binary predicates =, €. The atomic formulae are of the form ¢t = ¢’ with
(t,t'yeT?ort € X witht €7 and X € P.

Definition 3.4. A formula of S1S is defined as following:

i) an atomic formula is in S1S;
ii) if ¢ € S1S then —¢, Vao, Jxd, VX0, IX ¢ are in S15, with x € V, X € P;
iii) if ¢ and 1 are in S15 then ¢ A, ¢ V ), ¢ = ¥, ¢ < 1 are in S1S.
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FIGURE 1. Normalization in base 2.

The interpretation of these formulae is the following: the variables of V are inter-
preted as natural numbers, the symbol 0 as 0 € w, the symbol s as the successor
function in w, the variables of P as subsets of w and the predicates symbols as =
and € in w. If each integer is assimilated to a singleton and each subset of w to an
infinite word on the {0,1} alphabet, then a S1S formula ¢(X;, Xs, ..., X)), with
X1, A, ..., X, free variables defines the w-language Ly C 2N x ... 2N of the n-tuple
—_———

of characteristic words satisfying ¢. !

An w-language L is said definable in S1S if there exists a formula ¢ in S1S so that
L = Ly.

Recall the following result:

Theorem 3.5. for all w-language L, the following assertions are equivalent:

i) L= U1§i§n A;BY with A;, B; rational sets of finite words;

ii) L = L¥(A) with A nondeterministic Biichi automaton;

ili) L = L¥(A) with A deterministic Muller automaton;
)

iiii) L s definable in S1S.

We call Rec(A“) the family of such languages.
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4. BOREL HIERARCHY

For all this section, see [15,20]. Borel sets of a topological space X are the sets
obtained from open sets using complementation and countable unions. When X
is metrizable we can define the hierarchy of Borel sets of finite rank, using the
classical notation of Addison [15]:

Definition 4.1. Let X be a metrizable space, for n € w — {0}, we define by
induction the classes X2 (X), TI%(X) and A% (X):

»?(X) = G(X) the class of open sets of X.

M2 (X) = {AY | Ac X2(X)}, where AV refers to the complement of A.

201 (X) = {UpnAm | Ay € IO (X),m € w}.

Ab(X) = 30 (X) N 110 (X).

We must have a metrizable space since in a metrizable space the closed sets are
I1).
In particular, we have:
I1Y is the class of closed sets.
> = F, is the class of countable unions of closed sets.
19 = G5 is the class of countable intersections of open sets.
One can prove that: % UTI? C A?z+1~
This gives us the following picture where any class is contained in every class
to the right of it:

»? »9 »? »0

AY ' AY ’ AY ’ A !
! 0 2 0 3 0 " 0
Hl H2 H3 Hn

The Borel hierarchy is also defined for transfinite levels [15], but we shall not need
them in the present study.
For all n € w the classes X2 (X), TI2(X), A%(X) are closed by finite union and
intersection, moreover X°(X) is closed by countable union, IT% (X) is closed by
countable intersection and A% (X) is closed by complement.

When X is an uncountable metric complete space, the Borel hierarchy is strict.
In what follows X will be A“ or [a,b] with a and b real numbers.

Definition 4.2. The definition of Baire classes for functions is recursive.
Let X, Y be metrizable spaces and a function f: X — Y.
i) f is Baire class 0 if { is continuous.
ii) Vn € w, f is Baire class (n 4 1) if f is the pointwise limit of a sequence of
Baire class n functions.

The Lebesgue, Hausdorff, Banach theorem makes the connexion with the Borel
hierarchy, see [15]:

Theorem 4.3. Let X, Y be metrizable spaces with Y separable. Then for all
n>2, f: X — Y is Baire class n iff for all open V€Y, f~1(V) € ZSLH(X).
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Remark 4.4. Note that this result hold for n = 1 if in addition X is separable
and either X = A“ or else Y = R.

Denote cont(f) the set of points of continuity of f. We have the classical
following proposition, see [15]:

Proposition 4.5. Let X, Y, be metrizable spaces and f : X — 'Y, then cont(f)
18 1'[8.

The following result due to Baire shows that Baire class 1 functions have many
continuity points, see [15]:

Theorem 4.6. Let X, Y, be metrizable spaces with Y separable and f : X — 'Y
be Baire class 1. Then cont(f) is a dense II3 set.

It is well known that the graph of a continuous functions is closed. The following
result is classical, see [9] for example.

Lemma 4.7. Let X, Y, be metrizable spaces with' Y compact and f : X — Y. f
s continuous iff its graph is closed.

Lemma 4.8. Let X, Y, be metrizable spaces with Y separable and f: X — Y. If
f is Baire class n then its graph is H2+1(X).

Proof. We give the proof in the case X = A“, Y = B“. First notice that if
f(a) = 0 then Yu € B*, (6 € uB* = f(a) € uB¥) and if f(«) # § then Ju € B*
such that 8 € uB* and f(«a) ¢ uB“. Thus:

(a, B) € graph(f) & fla) = f & [Vu € Y*(8 € uB* = f(a) € uB”)].

As f is Baire class n, {a € A“|f(a) € uB*} isin A%, ,(A¥) and

{B € B*|p € uB“} is in AJ(B¥). Thus for all fixed u € B*,

{(e, B) € A x B* | (B € uB® = f(a) € uB¥)} isin A}, (A¥ x B¥) and
{(e,B) € A% x B¥ | Yu € B*(8 € uB* = f(a) € uB¥)} is in IT) | (A x B¥). O

5. WE CAN DECIDE IF A FUNCTION DEFINABLE IN S1S 1S BAIRE
CLASS 1

Definition 5.1. Let A, B be finite alphabets, a function f : A — BY is definable
in S1S if its graph is defined by a formula in S1S.

Thanks to Theorem 3.5 f : AY — B is definable in S1S if its graph is recog-
nized by a Biichi automaton on the product alphabet A x B.

Recall that f is Baire class n if f~1(U) € Z%H for every open set U € B¥. As
(uB“)uep~ s a basis of clopen sets, this condition is equivalent to:

Yue BY, f'(uB¥)eAl,,. (1)

It is easy to see that sets recognizable by Muller automata are Ag, in fact they
are Boolean combination of 9.
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Proposition 5.2. Let A, B be finite alphabets and f : AY — B be a function
definable in S1S. Then f is Baire class 2.

Proof. We need only to remark that if U is recognizable by a Muller automaton
then f~1(U) is recognizable. O
At last, let us recall a result of Landweber [17]:

Proposition 5.3. If L € Rec(A¥) and 1'[8 then L is recognizable by a determin-
istic Blichi automaton.
Moreover one can decide for L € Rec(A®) if it is Y (resp. TIY) fori= 1, 2.

Let f be definable in S1S, it is easy to see that cont(f) is still definable in
S1S. So by Proposition 4.5 and Proposition 5.3 cont(f) is recognizable by a
deterministic Biichi automaton. Moreover if it is Baire class 1 then by Lemma 4.8
its graph is recognizable by a deterministic Biichi automaton.

Definition 5.4. Let f : A — B“ be a function where B“ is lexicographically
ordered. The overgraph and the undergraph of f are respectively:

G1(f) = {(e,p) € A x B* | f(a) < S} (2)
GL(f) = {(op) €A x B[ f(a) > f}. (3)

Sierpinski [25] has shown that a function f : R — R is Baire class 1 if and only if
the overgraph and the undergraph of f are 23. We show that this characterization
is also true for functions on infinite words if we replace the real ordering by the
lexicographical ordering on B*.

Proposition 5.5. Let A and B be two finite alphabets, then f : A — B“ is Baire
class 1 iff the overgraph and the undergraph of f are in Eg(A x B).

Proof.

(=)

Let (a,B) € A¥ x B¥. The word f(«) is lexicographically less than 3 iff there
exists n € w such that f(«)[n] = B[n], i.e., they have the same prefix of length n,
and f(a)(n) < B(n). Let u= f(a)[n+ 1] € BT, then f(a) € uB“. So:

Grih=U (Fws)x U o

u€B* v>u,|v|=|ul

As 28(X ) is closed by countable unions then the overgraph of f is 23.
(=)

Let v € BT, we denote by a the minimum and 2z the maximum of B.

We first consider the case where u is not of the form a™ or z" . We have:

0 €uBY < 8> uz” and B < ua®

a€ fH(uB¥) & fla) > uz* and f(a) < Ta®.
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Then f~1(uB*) ={a € B* | f(a) >uz*}({a € B¥ | f(a) < ua*}.

But {a € B¥; f(a) > uz¥} (respectively {a € B* | f(a) < Ta®}) is XY as section
of the undergraph (respectively overgraph ) of f and this proves the result.

In the case where u = a™, the proof is the same with f~1(uB%) = {a € B¥ | f(a) <
ua“}. And for u = 2", f~H(uB%) = {a € B¥ | f(a) > uz*}. O

Remark 5.6. Note that the notion of Baire class 1 is purely topological so it is
independant of the order on B. So to be 23 for the overgraph and the undergraph
is independent of the choice of the order on B.

Theorem 5.7. We can decide if a function f: AY — B“ so that
Graph(f) ={(a, ) € A¥ x B¥ | f(a) = B} is definable in S1S is Baire class 1.

Proof. Fix an order on B. The lexicographical ordering on B“ is definable in S1.5.
We have:

(,8) € G| (f) & v € BY ((,y) € Graph(f) N B <7).

Then the overgraph and the undergraph of f are definable in S1S. Using Propo-
sition 5.3, we can decide if f is Baire class 1. O

6. AN EXAMPLE OF NON-CONTINUOUS BAIRE CLASS 1 FUNCTION:
THE CANONICAL BOOTH FUNCTION

In [12], Frougny shows that a function can be on-the-fly computed iff it is a right
subsequential function. She gives as example the Booth canonical recoding, see
also [19] for applications to multiplication. In this section, we extend the Booth
canonical recoding on infinite words, prove that it is a non-continuous Baire class
1 function and give its set of continuity points.

We recall the definition of a right subsequential function.

Definition 6.1. A right subsequential machine with input alphabet A and output
alphabet B, M = (Q, A x B*,T,i,s) is a directed graph labeled by elements of
Ax B* where @ is the set of states, i € @ is the initial state, T' € Q@ x (Ax B*)x @ is
the set of labeled transitions and s : Q — B* is the terminal function. The machine

must satisfy the following property: it is input deterministic, i.e., if p AN q and
pﬂw‘, then g =r and u =v. A word u = ag---a, € A" has v € B* for image

by M if there exists a path in M starting in the initial state ¢

i A [Vn An—1/Vn—1 ao/vo

with v; € B* and such that v = s(gn+1)vo - - Un.
A function f: A* — B* is right subsequential if there exists a right subsequential
machine M such that if u € A* and v € B*, v = f(u) iff v is the image of u by M.
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Fi1cURE 2. Right subsequential Booth canonical recoding.

On finite words, the Booth canonical recoding is the function that maps any
binary representation onto an equivalent Avizienis [1] one with the minimum num-
ber of non-zero digits: ¢ : {0,1}* — A* with A = {1,0,1} where 1 means —1,
see [19]. It can be obtained by a least significant digit first (LSDF) algorithm by
replacing each block of the form 017, with n > 2, by 10" ~1'1. The following right
subsequential machine in Figure 2 realizes the Booth canonical recoding [12].

We will now extend the Booth canonical recoding on infinite words o which
satisfy «(0) = 0 by ¢ : 0{0,1}* — A“. First note that on finite words, the pattern
00 in the input blocks a possible carry. So for o € 0{0,1}* if « contains an
infinity of blocks 00 it is natural to extend Booth canonical recoding on « using
the algorithm on each finite consecutive word of « starting by 00.

Example 6.2. An infinite number of 00.

©(01100101100010100011100- - -) = (011)  ©(001011) (000111)---

=10T 010101 001007 - - -
©(0101(01010011011)*) = (0101)  (p(0101) ©(0011011))*
= 0101 (0101  0100T0T)~

If the number of 00 in « is finite we must be careful because a carry can come from
the infinity. This case depends of the number of 11 contained in . If this number is
finite: let n be the greatest integer such that a(n—2)a(n—1) = 11 (n = 0if no block
11 appears in «) then we can extend ¢ on « by p(a) = p(a[n])a(n)a(n +1)---

Example 6.3. A finite number of 00 and finite number of 11.

((01)) = (01)« o
©(01001011(0101001)%) = 01010101(0101001)*.

At last, if in o the number of 00 is finite and the number of 11 is infinite then
a carry come from the infinity and propagate up to the last 00. Let then n be
the greatest integer such that a(n — 1)a(n) = 00 (n = 0 if no 00 hold in «).
Therefore we can extend ¢ on « by p(a) = p(a[n])1y¥(a(n + )a(n 4+ 2) - --) with
¥ : {0,1}¥ — A¥ the sequential function defined by 1(0) =1 and (1) = 0.

Example 6.4. A finite number of 00 and infinite number of 11.
©(01¥) = 10¢
©(01100(101011)¥) = 10101(010100)*.
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0/0

FiGURE 3. Booth Biichi automata.

With this construction, we obtain a function ¢ : 0{0,1}* — A“ which still maps
any binary representation onto an equivalent Avizienis one.
The graph of ¢ is realized by the Biichi automaton A of Figure 3.

The essential difference with the finite case is that the carry can come from
the infinity and this suggests discontinuity. A block of the form 11 launchs or
propagates the carry and a block the form 00 stops the carry. So have a finite or
an infinite number of such blocks will be important in the study of the regularity
of .

Proposition 6.5. The function ¢ : 0{0,1}* — A“ is a non continuous Baire
class 1 function.

Proof. 1t is easy to see ¢ as the pointwise limit of a sequence of continuous function
but it is more interesting to determine the topological complexity of =1 (V) for
V € {vA¥|v € A*} Dbasis of clopen sets of A%.
(1) Let o € o~ (v1A%) with |v] = n. It means that 6(0, (a[n],v)) # ) and
qué(o,(a[n],u)) 5(q, (a(n),1)) # 0. So there is two possibilities for a(n):
a(n) is a 0 which propagates a carry (transition from state 4 to 3 or 5 to
3) or a(n) is a 1 which releases a carry (transition from state 4 to 3 or 5
to 3). Let I = {u € {0,1}*| |u| =n, §(0, (u,v))({4,5} # 0}, I is finite,
and:

o (w1a®) = | (uo(1o)*11{0,1}“’ |J ut(01)*00{0, 1}* )

uel

So ¢~ (vTA¥) is open.
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(2) Let o € =1 (v0A%) with |v] = n. The two possibilities for a(n) are: a(n)
is a 0 which does not propagate a carry (transition from state 1 to 1 or 2
to 1) or a(n) is a 1 which propagate a carry (transition from state 3 to 4,
4to5orbtob). Let J={ue{0,1}* Jul=n, 0, (u,v)){1,2} # 0},
K = {ue{0,1}*| |u| =n, §(0, (u,v))({3,4,5} # 0}, J and K are finite,
and:

o (w04%) = | (uO(lO)*O{O,l}“’ U uO(lO)“’) L ut(01)*1{0,1}*.

ueJ ueK

So ¢ 1 (v0A¥) is a closed non open set so ¢ is not continuous.

(3) Let a € o 1 (v1A¥) with |[v] = n. The two possibilities for a(n) are:
a(n) is a 0 which stops a carry (transition from state 1 to 3) or a(n) is
a 1 which does not propagate a carry (transition from state 1 to 2). Let
L={ue{0,1}* |u| =mn, (0, (u,v)) ={1}}, I is finite, and:

o w1A®) = | (uO(lO)*ll{O,l}“’ |J wi(01)*00{0, 1} | J u1(01)* )

u€eL

So ¢~ (vTA¥) is a closed non open set.

Then for all open set V € A, ¢~ 1(V) is B9 and ¢ is Baire class 1. O

Consider now the continuity points of ¢. It is easy to see that ¢ is not contin-
uous in (01)“: ¢((01)¥) = (01)«, (01)™1* converges to (01)¥ and ¢((01)"1¥) =
1(01)"~tow.

Proposition 6.6. The set of points of non continuity of ¢ is {u(01)*| v €

0{0,11*}.

Proof. The function ¢ is not continuous in « iff there exist an open set V € A% so
that a € o1 (V)\Int(p~1(V)). In the proof of the previous result, we have the
complete description of ¢ ~!(V) for a basis of open sets and such « are the words
of the form «(01)~. O

Remark 6.7. Note that cont(y) is quite a dense G set.

Another example of function definable in S15, Baire class 1 but not continuous,
is given by the normalization (Ex. 3.2) in Pisot numeration systems [13].

7. THE CASE OF THE REAL NUMBERS

In this section we consider a numeration system for real numbers with Pisot
base. A real 6 is a Pisot number if it is an algebraic integer strictly exceeds 1, but
such that its conjugate elements are all strictly less than 1 in absolute value. For
example, the natural integers greater than 2 and the golden ratio 1+2‘/5 are Pisot

numbers. Real numbers are represented in Pisot base with alphabet A C Z ([0, 6].
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0/0 0/0
1/1
1/0

2/1 2/0

FIGURE 4. Automaton of the Devil staircase.

Then define an evaluation function pg:

po i AY — [07 1]
@ = TasogH

Let us recall that pg is a continuous surjection on [0, 1].

Frougny proved that M = {(«a, 8) € A¥ x A¥|up(a) = ue(B)} and
N ={(o,3) € A% x A®|pg(c) < pg(B)} are definable in S1S [11] see also [3].

A function f : AY — BY is consistent with pp, and pg, (where 61 and 6 are
two Pisot numbers) if there exists F' such that the following diagram commutes:

f

AY ——— B¢

1oy l lmh

0,1 —£— [0,1]
From now on, we consider functions f : A — A“ definable in S1S5 which are
consistent with .
In the case that the base 6 is a natural integer, one can find historical examples
of such continuous F in Chapter XIII of Eilenberg [5]. In 1890 Giuseppe Peano
published an example of a continuous function

H:[0,1] — [0,1] x [0, 1]

which is surjective, the so-called square-filling curve. We have H = (F,G) with
F:[0,1] — [0,1], G : [0,1] — [0,1]. The function F' (resp G) can be defined by
a consistent function f : 9% — 3% from base 9 to base 3. The function f is realized
by a left sequential letter to letter transducer, hence f is definable in S1.5. Other
examples in the same spirit can be find in the works of Waclaw Sierpinski, Bernard
Bolzano, Ludwig Scheeffer, Georg Cantor. The reader interested in history should
see the book of Edgar [4] and the beautiful article of Maurey and Tacchi [18] about
the Devil’s staircase of Ludwig Scheeffer presented in Figures 4, 5.

In the following example, we give an example of a non continuous function F'
definable in S1S and Pisot basis. One can see examples of some historical functions
of the analysis like jumps function that we have seen in [18].
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0.8 /

064 /

0.4 /

0.2 p

X

FI1GURE 5. Graphical approximation of the Devil staircase.

Example 7.1. Here we present a simple example of a jump function F' definable
in §1S5. The graph of F' is obtained in the following way. First we take the
symetric of the graph of the Devil staircase about the line y = x. This is not
the graph of a function, so we choose for each = the greatest y such that (z,y)
belongs to this relation. As the Devil staircase has constant values equal to u/2"
with n € w*, u € w and 0 < uw < 2™ outside the Cantor set, our function F' is
discontinuous in u/2" with n € w*, u € w, 0 < u < 2™ and jump by steps of 1/3"
with n € w*. We choose for F(u/2™) the bound of the interval: for example with
x =1/2, F(z) € [1/3,2/3] and we choose F(1/2) = 2/3. So the function F is
right continuous on [0, 1].

The function f : {0,1}* — {0,1,2}* given by the non deterministic automaton
of Figure 6 is consistent with po and pus. Note that discontinuity is given by non
determinism. Here the set of discontinuity is (0 4+ 1)*01¢. It is easy to see that f
is Baire class 1.

Then the function F : [0, 1] — [0, 1] obtained in the following commutative diagram
is the expected one, see Figure 5.

(0,1} —L— {0,1,2}*

al [

0,1 —2—  [0,1]
For simplify we suppose that for the input and the output, numbers are represented
in the same base. Note that if f is definable in S1.5, and if 8 is a Pisot number
then one can decide if f is consistent. This can be expressed by a closed S1S
formula and S15 is decidable [2]. For more details, we refer the reader to [3].
As f is Baire class 2, the topological complexity of such F' is Baire class 2. To
see this we can use the following theorem of Saint Raymond [15,23].
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0.8

0.6

0.4+
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FIGURE 7. Graphical approximation of the jump function F.

Theorem 7.2. Let X, Y be compact metrizable spaces, Z a separable metrizable
space, a continuous surjection g : X — Y and a Baire class n function f : X — Z
with n € w, then there exists a Baire class 1 function s : Y — X so that gos = Idy
and f o s is Baire class n.

Corollary 7.3. For f and F defined in the previous diagram, if f is Baire classe
n then F is Baire class n too.

Proof. Take X = A¥, Y = [0,1] and Z = A“. By Theorem 7.2 there exists a
selector s : [0,1] — A“ so that f o s is Baire class n. Then F' = pg o f o s is Baire

class n too. ]
Our aim is to extend the results of decidability to the function F.
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Choffrut, Pelibossian and Simonnet [3] have shown that the continuity of the
function F' is decidable with an algorithmic proof. We give a topological proof of
this result and then show that we can also decide if F' is Baire class 1.

Proposition 7.4. Let F :[0,1] — [0,1] in a base § with @ a Pisot number so that
there exist a function f: AY — A“ which verifies:

(1) Graph(f) is definable in S1S.
(2) Vo € 4° " uo(f(a)) = Flua(a)).

Then we can decide if F' is continuous.

Proof. The function F is continuous iff its graph is closed. So let us prove that we
can decide if Graph(F) is closed. Let u be defined by:

i AY x AY — [0,1] x [0,1]
(a,8) = (uo(c), o (P)).
Note H = p~(Graph(F)) = {(a, 8) € A x A° | F(ug(a)) = po(8)} = {(, B) €
AY x AY | po(f(a)) = po(B)}. As 6 is a Pisot number and f definable in S15, H
is definable in S15.

If Graph(F) is closed, as p is continuous, H is closed too. Conversely, if H
is closed, as A“ is compact and g is continuous and surjective, Graph(F) =
w(pn~Y(Graph(F))) = p(H) is compact. Then F is continuous iff H is closed.
The set H is recognizable by automaton so by Proposition 5.3 we can decide if F’
is continuous. O

Proposition 7.5. Let F : [0,1] — [0, 1] such that there exists a function f : AY —
A% which verifies:

(1) Graph(f) is definable in S1S.
(2) Vo€ A% : py(f () = F(po(()).
Then we can decide if F' is Baire class one.

Proof. For the proof we use an old result of Sierpinski:

a function F' : R — R is Baire class 1 iff its overgraph and its undergraph are
=9 [25].

Let H=p"YG 1 (F)) ={(a,B) € A° x A* | F(ug(a)) < po(B)} we have

H = {(a,p) € AY x A“ | up(f()) < po(B)}. As 6 is a Pisot number and f
definable in S1S5, H is definable in S1S.

By the same argument as in Proposition 7.4, it is easy to verify that G 7 (F) is
9 iff H is 3. To see this, note that as g is surjective

G1(F)=pp (G 1 (F) = p(H).

As p is continuous if G 1 (F) is 9 then H is £9. Conversely if H is 39, as A“ x A¥
is compact, then H is K, (countable union of compact sets) and G 1 (F) = p(H)
is K, as a continuous image of a K, set.

As H is recognizable by automaton, by Proposition 5.3 we can decide if F is
Baire class 1. O
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8. CONCLUSION

Let us talk about the asynchronuous case. An w-rational relation is a relation
whose graph is recognized by a Biichi automaton, and for which transitions are
labeled by couples of words (u,v) € A* x B* instead of couples of letters (a,b) €
A x B. They were first studied by Gire and Nivat, see [7,8, 10, 14]. Frangoise
Gire has shown that the problem of functionality is decidable for an w-rational
relation [14]. Recall that a set is analytic (3] in the notation of Addison see [15])
if it is the continuous image of a Borel set. It is well known that Borel sets are
analytics sets but that there exist analytics sets which are not Borel [15]. It is
easy to see that w-rational relations are analytic sets. Recently Finkel has shown
that there exist an w-rational relation which is not Borel [7]. From this he deduces
many undecidability results [8]. It is easy to see that an w-rational function is of
Baire class 2. Recently, Prieur [21,22] has generalized the decidability of continuity
to the w-rational functions. Moreover the overgraph (resp. undergraph) of an w-
rational function is an w-rational relation. Unfortunately Finkel has shown the
following theorem: the problem of knowing if an w-rational relation is 2? (resp.
IMY) for i = 1 and 2 is undecidable [8]. In addition, from O. Carton (personal
communication) we have the following result: the problem of knowing if an w-
rational function is totally discontinuous is undecidable. So we think that Baire
class 1 is undecidable for the w-rational functions.

For ending we consider finite words. The following theorem of Elgot Mezei,
see [24] is well known: a rational relation which is a graph of a function f with
f(e) = € is the composition of a left sequential function and a right sequential
function. A left sequential machine gives continuous function when we read infi-
nite words. But a right sequential machine can give a function of Baire class 2.
We think that there exists a right subsequential function such that its on-the-fly
extension on infinite words is not Baire class 1. Can we interpret points of continu-
ity, as points that need only one register in an on the fly algorithm? Finally note
that the Booth canonical recoding is an w-rational relation with bounded delay,
and all w-rational relations with bounded delay can be synchronized [10], this is
what we have done.
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