Automata, Borel functions and real numbers in Pisot base
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 41 (2007) no. 1, pp. 27-44.

This note is about functions f:AωBω whose graph is recognized by a Büchi finite automaton on the product alphabet A×B. These functions are Baire class 2 in the Baire hierarchy of Borel functions and it is decidable whether such function are continuous or not. In 1920 W. Sierpinski showed that a function f: is Baire class 1 if and only if both the overgraph and the undergraph of f are Fσ. We show that such characterization is also true for functions on infinite words if we replace the real ordering by the lexicographical ordering on Bω. From this we deduce that it is decidable whether such function are of Baire class 1 or not. We extend this result to real functions definable by automata in Pisot base.

DOI : 10.1051/ita:2007007
Classification : 03D05, 68Q45, 68R15, 54H05
Mots-clés : Borel set, Borel function, automata, sequential machine
@article{ITA_2007__41_1_27_0,
     author = {Cagnard, Benoit and Simonnet, Pierre},
     title = {Automata, {Borel} functions and real numbers in {Pisot} base},
     journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications},
     pages = {27--44},
     publisher = {EDP-Sciences},
     volume = {41},
     number = {1},
     year = {2007},
     doi = {10.1051/ita:2007007},
     mrnumber = {2330041},
     zbl = {1156.03036},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/ita:2007007/}
}
TY  - JOUR
AU  - Cagnard, Benoit
AU  - Simonnet, Pierre
TI  - Automata, Borel functions and real numbers in Pisot base
JO  - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY  - 2007
SP  - 27
EP  - 44
VL  - 41
IS  - 1
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/ita:2007007/
DO  - 10.1051/ita:2007007
LA  - en
ID  - ITA_2007__41_1_27_0
ER  - 
%0 Journal Article
%A Cagnard, Benoit
%A Simonnet, Pierre
%T Automata, Borel functions and real numbers in Pisot base
%J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
%D 2007
%P 27-44
%V 41
%N 1
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/ita:2007007/
%R 10.1051/ita:2007007
%G en
%F ITA_2007__41_1_27_0
Cagnard, Benoit; Simonnet, Pierre. Automata, Borel functions and real numbers in Pisot base. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 41 (2007) no. 1, pp. 27-44. doi : 10.1051/ita:2007007. https://www.numdam.org/articles/10.1051/ita:2007007/

[1] A. Avizienis, Signed-digit number representation for fast parallel aritmetic. IRE Trans. Electronic Comput. 10 (1961) 389-400.

[2] J.R. Büchi, On a decision method in restricted second order arithmetic, in Methodology and Philosophy of Science. Stanford Univ. Press, Calif. (1962) 1-11.

[3] C. Choffrut, H. Pelibossian and P. Simonnet, Decision issues on functions realized by finite automata. J. Automata Languages Combin. 4 (1999) 171-182. | Zbl

[4] A. Edgar, Classics On Fractals. Studies in non linearity. Westview Press (2004). | Zbl

[5] S. Eilenberg, Automata, Languages and Machines, Vol. A. Academic Press, New York London (1974). | MR | Zbl

[6] M.D. Ercegovac and T. Lang, On-the-fly convertion of redundant into conventional representations. IEEE Trans. Comput. 36 (1987) 895-897.

[7] O. Finkel, On the topological complexity of infinitary rational relations. Theor. Inform. Appl. 37 (2003) 105-113. | Numdam | Zbl

[8] O. Finkel, Undecidability of topological and arithmetical properties of infinitary rational relations. Theor. Inform. Appl. 37 (2003) 115-126. | Numdam | Zbl

[9] G. Flory, Topologie, Analyse. Vuibert (1976).

[10] C. Frougny and J . Sakarovitch, Synchronized relations of finite and infinite words. Theoret. Comput. Sci. (1993) 45-82. | Zbl

[11] C. Frougny and B. Solomyak, On representation of integers in linear numeration systems1996) 345-368. | Zbl

[12] C. Frougny, On-the-fly algorithms and sequential machines. IEEE Trans. Comput. 49 (2000) 859-863.

[13] C. Frougny, Numeration Systems. Chapter 7 of M. Lothaire, Algebraic Combinatorics on Words. Cambridge University Press (2002).

[14] F. Gire, Two decidability problems for infinite words. Inform. Proc. Lett. 22 (1986) 135-140. | Zbl

[15] A.S. Kechris, Classical Descriptive Set Theory. Springer-Verlag (1995). | MR | Zbl

[16] P. Kornerup, Digit-set convertions: Generalizations and applications. IEEE Trans. Comput. 43 (1994) 622-629.

[17] L.H. Landweber, Decision problem for ω-automata. Math. Systems. Theory 3 (1969) 376-384. | Zbl

[18] B. Maurey and J.P. Tacchi, Ludwig Scheeffer et les extensions du Théorème des Accroissements Finis, in Séminaire du Luxembourg, Travaux mathématiques, fascicule XIII (2002) 1-60. | Zbl

[19] J.M. Muller, Arithmétique des ordinateurs. Masson, Paris (1989).

[20] D. Perrin and J.-E. Pin, Infinite words, Automata, Semigroups, Logic and Games. Pure Appl. Mathematics Series 141, Academic Press, Elsevier (2004). | Zbl

[21] C. Prieur, How to decide continuity of rationnal functions on infinite words. Theoret. Comput. Sci. 250 (2001) 71-82. | Zbl

[22] C. Prieur, How to decide continuity of rationnal functions on infinite words (Errata). Theoret. Comput. Sci. 276 (2002) 445-447. | Zbl

[23] J. Saint Raymond, Fonctions boréliennes sur un quotient. Bull. Soc. Math. France 100 (1976) 141-147. | Zbl

[24] J. Sakarovitch, Éléments de théorie des automates. Vuibert informatique (2003). | Zbl

[25] W. Sierpinski, Sur les fonctions de première classe. C. R. Acad. Sci. Paris 170 (1920) 919-922. | JFM

Cité par Sources :